Twitter Sentiment Analysis with Emojis

Dane Hankamer
Department of Computer Science
Stanford University
Stanford, California
dhank@stanford.edu

Abstract

The exponential rise in popularity of emoji
usage in informal writing mediums, such as
Twitter, over the past few years has rendered
many previous studies of Twitter sentiment
analysis outdated. We hypothesize that de-
liberate strategies for emoji handling increase
sentiment analysis performance. After ini-
tially training sentiment classification models
on a commonly used but decade-old Twit-
ter dataset, we construct a “modern” Twitter
dataset that prominently features emojis and
“fine-tune” our models to utilize emoji-based
features. We find our hypothesis to be correct,
demonstrating that emoji handling clearly and
significantly increases sentiment classification
power. We conclude that is essential for any
modern Twitter or informal writing application
to effectively handle emojis, and we identify
multiple areas of improvement for even greater
potential gains in sentiment analysis perfor-
mance.

1 Introduction

Sentiment analysis is a seemingly simple problem
in Natural Language Understanding (NLU); clas-
sify text as positive or negative (or neutral, some-
times), or according to some type of ratings sys-
tem (one to five stars, scale of one to ten, etc.).
However, complexities in human language and
the widely varying contexts in which humans re-
ceive language increase the depth and importance
of sentiment analysis as a sub-problem of Natural
Language Understanding. Recent approaches to
sentiment analysis look to increase the accuracy of
classification into any number of categories, all the
while increasing the efficiency of computation. On
social media networks, such as Twitter, the general
public essentially provides free and unlimited data
as any number of worldwide events occur. The
ability for an entity to quickly develop an accu-
rate understanding of the sentiment of an interest
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group, such as consumers of a product or citizens
of a municipality, is of immeasurable value in the
current day and age.

Specifically, Twitter data presents an interest-
ing challenge for sentiment analysis, as users fre-
quently depart from conventional grammar usage
in favor of short, informal language when they
express their opinions in a Tweet. Twitter has
been a popular subject for sentiment analysis re-
search, and many studies exist using Twitter as
the medium for their datasets. However, in recent
years, emoji usage as a trend has grown rapidly.
Emojis became available on mobile operating sys-
tems in 2010 after being encoded into unicode,
and they have become so popular that the crying-
laughing emoji, &, was named the Oxford Dictio-
naries Word of the Year in 2015. Whereas ten
years ago, people used ASCII-composed emoti-
cons, such as :-D, to occasionally express ba-
sic sentiment, plentiful and colorful emojis seem
ubiquitous with Twitter feeds today. Twitter users
today often use emojis to convey sentiment in a
nuanced way.

In sentiment analysis, and in any machine learn-
ing problem, it is important for the distribution of
the data that a model is trained on to match the
distribution of the data that the model is tested on
as closely as possible. Because many past Twitter
studies were conducted before widespread emoji
usage, we predict that the distribution of those
datasets fails to match the distribution of modern
Twitter data. We hypothesize that by constructing
a “modern” Twitter dataset, one that contains emo-
jis, and by leveraging an effective representation
of emojis, we can improve the sentiment classifi-
cation of modern Tweets.

In this study, we experiment with five different
models for sentiment analysis of Tweets: Naive
Bayes, Maximum Entropy, Support Vector Ma-
chines, a Shallow Neural Network, and a Recur-



rent Neural Network based on an LSTM. We train
our models on an existing (but likely outdated)
Twitter dataset and then “fine-tune” our models
using a representation of emojis on a dataset of
recently collected Tweets. We compare the pre-
dictions of our models on a test set of modern
Tweets to a set of automatically generated predic-
tions we use as ground truth. Finally, we com-
pare and analyze the performance of the differ-
ent model types after training on just the outdated
dataset of Tweets, after being fine-tuned on mod-
ern Tweets but without handling emojis, and af-
ter being fine-tuned on modern Tweets with emoji
handling.

2 Related Work

Pang and Lee serves as a survey of approaches to-
wards sentiment analysis (Pang et al., 2008). Pang
and Lee highlights different approaches toward
data collection, feature generation, building mod-
els, and the utility of sentiment analysis.

Go, Bhayani, and Huang explore Naive Bayes,
Maximum Entropy, and Support Vector Machine
classifiers on Twitter data, using different combi-
nations of unigrams, bigrams, and part-of-speech
tags as feature extraction functions (Go et al.,
2009). We utilize each of these models as base-
line models to compare with our shallow Neu-
ral Network and Recurrent Neural Network mod-
els, and we use many of the same features. Go,
Bhayani, and Huang also construct the Senti-
ment140 Dataset using Twitter’s APL. Tweets in
the dataset are labeled positive or negative based
on whether they were obtained using a “happy” or
“sad” emoticon query respectively. Although the
Sentiment140 Dataset does not contain any emo-
jis, as it was constructed in 2009, we find it a use-
ful dataset to initially train our models prior to
fine-tuning.

Kouloumpis, Wilson, and Moore explore a va-
riety of features (including slang, hashtags, and
emoticons) and models to perform sentiment anal-
ysis on Twitter data (Kouloumpis et al., 2011).
They find part-of-speech features are not particu-
larly helpful, which we surmise is likely due to the
inability to apply a sentiment treebank-like struc-
ture efficiently to newly collected data. We seek
to expand upon their contributions with emoji han-
dling and utilization of deep learning strategies.

Chen et al. propose a Bi-sense Emoji Embed-
ding and Attention-based LSTM algorithm for

Twitter sentiment analysis (Chen et al., 2018).
While their paper focuses on their model’s perfor-
mance, we focus on the magnitude of performance
gain made possible through emoji handling com-
pared to conventional algorithms (that do not ex-
plicitly handle emojis).

Hutto and Gilbert provide an automated, rule-
based approach called VADER for classifying so-
cial media text (Hutto and Gilbert, 2014). VADER
is seemingly among the most reputable sentiment
analysis classifiers designed to handle emojis. Us-
ing an approach similar to Chen et. al, we use the
VADER algorithm to classify Tweets we collect
using the Twitter API, and we use the most confi-
dent predictions as our ground truth labels for our
manually-constructed dataset.

Novak et al. track the usage of emojis through
70,000 tweets in 13 languages, with each Tweet
manually labeled as positive, negative, or neutral
(Novak et al., 2015). The result is a mapping
of 751 emoji characters to sentiment information
such as the number of occurrences in each posi-
tive, negative, and neutral Tweets. In our experi-
ments, we use these mappings to generate several
emoji-based features and encodings.

3 Data

Ideally, to evaluate sentiment classification on
“modern” Twitter data, we would make use of a
set of fully-labeled Tweets that matches the distri-
bution of modern Tweets. This means the Tweets
in our dataset should have an average length sim-
ilar to the population of Tweets we are interested
in, should contain emojis at a similar rate, etc. Un-
fortunately, many of the most robust and popular
Twitter datasets for sentiment analysis are more
than five years old, and the explosion in emoji us-
age is a relatively recent development. In fact, the
Sentiment140 Dataset, arguably the most popular
dataset used for Twitter sentiment analysis, was
released in 2009 and is now 10 years old. To ad-
dress this, we decide use a mix of the robust, ex-
isting Sentiment140 Dataset and our own newly
constructed “modern” Emoji Dataset.

3.1 Manually-Generated “Emoji Dataset”

We use Twitter’s API to collect Tweets to con-
struct an “Emoji Dataset.” Through Twitter’s API,
a user can submit a query of up to 400 strings at a
time, and Twitter will send the user any Tweets
that are Tweeted while the query is active that



contain one or more of the strings in the query.
Emojis have unicode equivalents, but Python also
has an emoji library that generates an emoji when
provided the emoji’s string alias (e.g.- the tradi-
tional smiling face emoji © has the alias “:grin-
ning _face:”). Based on occurrence information
detailed in Section 3.3, we query the Twitter API
for the 400 most popular emojis, filtering out any
Tweets that are not in English or contain any char-
acter that is non-ASCII and non-emoji. Twitter
increased the maximum length of a Tweet from
140 characters to 280 characters in late 2017, and
knowing that we will be comparing our results
to studies conducted before 2017, we additionally
filter out any Tweets longer than 140 characters.
Over a query running for approximately 12 hours,
we collect 194,056 unique Tweets that all contain
at least one of the most popular 400 emojis.

We preprocess the collected Tweets, removing
any retweet tokens (“RT”), converting the text to
lowercase, condensing any letters repeated more
than three times to just two repetitions of that
letter, replacing any usernames (format “@user-
name”) with a “<user>" token, URLs with a
“<url>” token, and hashtags with a “<hashtag>"
token. We also insert a space before and after each
emoji so that each emoji will be interpreted as its
own word. We again ensure that no Tweets are
repeated in our dataset.

Labeling our collected Tweets is the most sig-
nificant obstacle we face in constructing our
dataset. Hand-labeling thousands upon thousands
(or perhaps millions) of Tweets is impractical.
Thus, we use the VADER sentiment analysis algo-
rithm, published by Hutto and Gilbert, to automat-
ically label our Tweets (Hutto and Gilbert, 2014).
VADER provides a score between -1 and 1 for
each text it classifies, with -1 indicating full confi-
dence in negative sentiment and 1 full confidence
in positive sentiment. It is not ideal to use a clas-
sification algorithm output for our ground truth la-
bels, but it is simply much more efficient to do so.
To increase our confidence in these labels, we keep
only Tweets that score above 0.7 or below -0.7.
Roughly 35,000 Tweets are above the 0.7 thresh-
old, but only slightly more than 6,600 Tweets are
classified below the -0.7 threshold. To maintain
class balance, we randomly select 6,600 positive-
labeled and 6,600 negative-labeled Tweets to keep
from our original collection of nearly 200,000
Tweets, and we use the VADER-generated labels

as ground truth.

3.2 Sentiment140 Dataset

Containing just 13,200 Tweets, we do not believe
that our Emoji Dataset is large enough to produce
robust results. Therefore, we choose to use the
Emoji Dataset to fine-tune our models after train-
ing on a larger, traditional dataset. We choose to
train first on the Sentiment140 Dataset, published
by Go, Bhayani, and Huang and available on Kag-
gle, which contains 1.6 million Tweets, 800,000
labeled positive and 800,000 labeled negative (Go
etal., 2009). This dataset is the most popular Twit-
ter sentiment analysis dataset on Kaggle, and it
interestingly was collected based on querying the
Twitter API for emoticons, the ASCII-composed
predecessors of emojis. This underscores the need
for a modern dataset to conduct effective Twit-
ter sentiment analysis today. The Sentiment140
Dataset does not contain any emojis, but it is large
and robust enough to allow for initial training of
our models prior to fine-tuning.

3.3 Emoji Sentiment Data

In order to fine-tune our models on our manually-
generated Emoji Dataset, we need to employ
emoji-based features, discussed further in Section
4.3. Novak et al. provides a mapping to posi-
tive, negative, and neutral occurrence information
for 751 emojis, also available on Kaggle (Novak
et al., 2015). We use this mapping to help gener-
ate emoji-based features.

4 Methods

4.1 Experimental Procedure

In order to analyze the impact of emoji handling
on the sentiment classification of Tweets, we first
divide our datasets as follows:

o Sentiment140 Dataset, 1.6 million Tweets:
99% training set, 1% development set

e Emoji Dataset, 13,200 Tweets: 80% training
set, 10% development set, 10% test set

We initially train our models, variants described
in Section 4.2, on the Sentiment140 training set.
We keep a copy of this Sent/40-trained model.
Next, we fine-tune a copy of the Sent/40-trained
model on the Emoji training set, but we strip out
any emojis present in the data, effectively ignor-
ing emojis. This is our Sent140+Emoyjiless-trained



model. Finally, we fine-tune another copy of the
Sent140-trained model on the Emoji training set,
this time using a combination of the emoji-based
feature functions described in Section 4.3. This is
our Sent140+Emoji-trained model.

We evaluate all of our models on the Senti-
ment140 training and development sets !, mostly
to see if performance on the initial training data is
preserved after fine-tuning on the Emoji dataset.

We then evaluate all of our models on the Emoji
training and development sets. We compare these
results to performance on the Sentiment140 train-
ing and testing sets to see how the respective mod-
els perform on Tweets without emojis compared
to Tweets containing emojis. We also compare re-
sults between training and development to check
for overfitting. Additionally, we use development
set results to influence parameter and feature func-
tion selection for our models.

Finally, when it comes time for testing, we find
the combination of parameters and features for
each model that led to the best performance on the
Emoji development set, and we use those parame-
ters and features for testing on the Emoji test set.

4.2 Models

We use several types of machine learning models
to evaluate performance. To obtain baseline re-
sults, we use the same models that Go, Bhayani,
and Huang used 10 years ago (Go et al., 2009).
They are as follows:

e Naive Bayes Classifier
e Maximum Entropy Classifier (MaxEnt)
e Support Vector Machine Classifier (SVM)

We use the the scikit-learn implementations of
these models.

In the past decade, deep learning and neural net-
works have grown considerably more popular, par-
ticularly with applications to language processing
and understanding. Hoping to capitalize on these
advances, we use the following PyTorch imple-
mentations:

e Shallow Neural Classifier (Shallow)

'We evaluate all models on the Sentiment140 training and
development sets except for the Recurrent Neural Network
(RNN), described in Section 4.2. This is because the RNN
accepts input one word at a time during training and testing,
making evaluation of 1.6 million Tweets impractical given
time constraints.

e Recurrent Neural Network (RNN)

The RNN is a Long short-term memory (LSTM)
based implementation of an RNN. We use these
two deep learning models for further performance
evaluation.

4.3 Features

For our baseline models, we input into our mod-
els a vectorization of traditional unigram and bi-
gram feature extraction functions. We run trials
using solely unigrams, solely bigrams, and using
both unigrams and bigrams. Because we treat each
emoji as its own word, our models learn emoji-
based unigram and bigram features in addition to
traditional word-based features.

We support both of our deep learning mod-
els with pre-trained, 100-dimensional GloVe word
representations developed specifically for Twitter
data (Pennington et al., 2014). We ensure that we
preprocess in a similar (but not exactly the same)
way?, using the same format for token replace-
ment. For the shallow neural classifier, our feature
function computes a Tweet’s average embedding
by summing all of the embeddings of each individ-
ual word present in the Tweet (a word that does not
have a GloVe embedding corresponds to a vector
of zeros) and then dividing by the number of words
in the Tweet. This average embedding is our mod-
els’ input. For the RNN, the RNN processes each
Tweet one word at a time, making each word’s in-
dividual embedding the input into the model. For
the RNN, we use a 40,000 word vocabulary (out of
approximately 740,000 unique total words that ap-
pear in the Sentiment140 and Emoji datasets) and
force the vocabulary to contain all emojis present
in the Emoji training set. We create a pre-trained
word embedding matrix using the GloVe lookup
and this vocabulary.

We consider two ways to handle emojis for our
deep learning models. In the first, we calculate
the average “emoji score” of each Tweet. Based
on the occurrence information in Novak et al., for
each of the 400 emojis in our dataset, we take the
number of positive occurrences of the emoji, sub-
tract the number of negative occurrences, and then

ZPennington, Socher, and Manning provide a Ruby script
to preprocess Tweets for use with the GloVe Twitter embed-
dings, but we had already preprocessed our Tweets and ob-
tained baseline results when we found this script. It would
have been difficult to backtrack our preprocessing due to the
elimination of Tweets that started out different but became

identical after tokenization. We address this further in Sec-
tion 7.1.



divide by the number of total occurrences (includ-
ing neutral occurrences). For each Tweet, we take
the average emoji score of the emojis that occur
in the Tweet (weighted by number of appearances
in the Tweet), and append that score as the 101
feature of the Tweet.

The second way we handle emojis is through
“emoji substitution.” To do this, for any emoji that
occurs in a Tweet, we consider the emoji’s alias,
which is a word or multiple words that name the
emoji. We average the GloVe embeddings of the
words that make up the emoji’s alias (again a word
without an embedding corresponds to an embed-
ding of zeros), and we use this average embedding
as the effective GloVe embedding of the emoji.

For the shallow neural network, we explore us-
ing just the emoji score, using just emoji substitu-
tion, and using both the emoji score and emoji sub-
stitution as features. For the RNN, we explore the
same combinations. When we use just the emoji
score, we append a 101%¢ feature of O to the em-
bedding of each traditional word in the embed-
ding vocabulary and append the respective emoji
score to an embedding of 100 zeros for each cor-
responding emoji. When we use just emoji sub-
stitution, we simply substitute the computed 100-
dimensional embedding for each emoji’s alias as
specified above. When we use both the emoji
score and emoji substitution, we append a a 1015¢
feature of 0 to the embedding of each traditional
word in the embedding vocabulary and append
the respective emoji score to the computed 100-
dimensional embedding for each corresponding
emoji’s alias.

4.4 Metrics

The primary metric we use is F-1 score on the pos-
itive class. We have an equal number of positive
and negative Tweets in both the Sentiment140 and
Emoji Datasets, and although the training, devel-
opment, and test sets do not exactly maintain this
class balance (Tweets were randomly distributed
into respective sets), there is not much of a dispar-
ity. For this reason, we expect the F-1 score on
the positive class will be nearly the same as the F-
1 score on the negative class, and it would likely
be safe to report other metrics such as precision,
recall, or even accuracy. We report F-1 score on
the positive class for the sake of thoroughness, as
it is the most encompassing all-around metric of
the choices we have presented, but we also record

results for the negative class and the precision, re-
call, and accuracy metrics, available in Appendix
A.

5 Results

Results are presented in Table 1. The rows cor-
respond to results using different models, with
Naive Bayes referring to the Naive Bayes Classi-
fier, MaxEnt referring to the Maximum Entropy
Classifier, SVM referring to the Support Vector
Machine Classifier, Shallow referring to the Shal-
low Neural Classifier, and RNN referring to the
Recurrent Neural Network. The columns cor-
respond to results after different levels of train-
ing, with Sentl40 referring to models after be-
ing trained just on the Sentiment140 training set,
Sent140+ Emojiless referring to models after being
trained on the Sentiment140 training set and fine-
tuned on the Emoji training set without any emoji
handling, and Sent/40+Emoji referring to models
after being trained on the Sentiment140 training
set and fine-tuned on the Emoji training set with
emoji handling.

As explained in Section 4.1, we chose the pa-
rameters and feature functions for each function
based on which combination led to the best perfor-
mance on the Emoji Dataset development set. Ad-
mittedly, our parameter exploration was minimal.
Our deep-learning models were time-intensive,
with the RNN in particular taking about 24 hours
to run. Additionally, because the Naive Bayes,
MaxEnt, and SVM models were baseline models,
once we obtained results we decided our effort was
likely better spent on implementing and improving
our deep learning models rather than attempting to
find optimal baseline model parameters. As such,
all of our results use default parameters implemen-
tation parameters with a few exceptions (random
seeding where applicable, “saga” solver where ap-
plicable, warm start turned on where applicable,
etc.).

However, we did explore different combinations
of feature functions, and for each model we ob-
tained the best results on the Emoji development
set and then used the same features for testing on
the Emoji test set with the following feature com-
binations:

e Naive Bayes: Unigram features only
e MaxEnt: Unigram features only

e SVM: Unigram features only



Table 1: F-1 scores for the positive class on the Emoji Dataset test set for baseline and deep learning models. Best results are

bolded for each level of training.

Model Sent140 Sent140+Emojiless Sent140+Emoji
Naive Bayes 0.84362 0.85417 0.97172
MaxEnt 0.83410 0.87735 0.97586
SVM 0.78807 0.88069 0.98187
Shallow 0.87571 0.88651 0.94081
RNN 0.84415 0.86086 0.94413

e Shallow: Emoji score extra dimension only

e RNN: Emoji score extra dimension and emoji
substitution for emoji GloVe embedding

We see in Table 1 that for almost all models
(with the exception of Shallow), exposure to the
Emoji training set even without emoji handling
led to marginal gains in performance (an aver-
age increase of 0.0348 in F-1 score). However,
in all cases, emoji handling led to significant per-
formance gains compared to the models trained
on just Sentiment140 training data (an average in-
crease of 0.1257 in F-1 score) and compared to the
models fine-tuned without emoji handling (an av-
erage increase of 0.0910 in F-1 score).

6 Discussion

Based on the results in Table 1, it is clear that our
hypothesis was correct, handling emojis in mod-
ern informal text, such as Tweets, significantly in-
creases sentiment classification power.

One of the reasons for this performance increase
is the expressiveness of emojis. There are exam-
ples when an emoji can be substituted with an ob-
vious emotional equiavlent (for “I’m going to my
friend’s house ©”, the emoji can easily be replaced
with a word like “happy”). However, emojis, in
one character, often express sentiment that often
takes several words to describe. The more convo-
luted the expression of a sentiment is, if for exam-
ple it takes a user a whole sentence to describe how
they feel, the more difficult it is for the algorithm
to determine the appropriate classification. Emojis
provide a clear sentiment all at once, making sen-
timent more easily attainable from clear features.

Another common problem in sentiment analysis
that emojis effectively address is negation. This
is particularly a problem for collected data, such
as Twitter data, where those conducting sentiment
analysis do not have the advantage of data that has
been fit to the sentiment treebank structure. In a

sentence like “Today is not a very good day”, it
is difficult for low level features, like n-grams, to
pick up on the negation “not” (it would require
at least 4-grams). However, appending an emoji
to the end of the sentence, like @, expresses the
negation “not good” in one word. We do not need
to worry about negations of emojis. For exam-
ple, when a user wants to express that they are not
happy, they simply use a sad emoji, not a “not”
emoji eventually followed by a happy emoji. Emo-
jis in many cases reflect an intended negation.

We were surprised that the results from our
deep learning Sent140+Emoji models failed to im-
prove on our baseline models. There are many
nuanced expressions and patterns in Twitter and
emoji sentiment that we suspected our simpler
baseline models would not be able to learn, but
we hoped that the deeper structure of neural net-
works would lead to performance gains in these
areas. Perhaps the absence of these gains is a re-
sult of insufficient parameter exploration. How-
ever, a more likely culprit is that our Emoji train-
ing set was simply not large enough (at 10, 560
Tweets) for our neural networks to learn enough
about the nuance of emoji usage. We see that our
deep learning Sent/40 models performed better
than our Sent/40 baseline models after training on
the 1,594,000 Tweets in the Sentiment140 train-
ing set. If we had used an Emoji training set of a
similar size as the Sentiment140 training set and
of the same distribution as our Emoji test and de-
velopment sets, perhaps our deep learning models
would have been able to better quantify the com-
plex relationships involved in Tweets with emojis
and would have performed better than our baseline
models.

6.1 Error Analysis

As displayed in the Table 2, we identified four
main categories that led to erroneous Tweet classi-
fication. First, the automated VADER approach



Table 2: Examples of trends in Tweet misclassification.

Error Type Example Tweet True Label | Predicted

Incorrect label by VADER try to watch this and not smile & negative positive

Sarcasm “can you delete this photo you took of | negative positive
me at the club i dont want my girlfriend
to see” &

Fake/spiteful emoji use note to self: stop trying so hard for peo- negative positive
ple who don’t care. ©

Neutral/ambiguous Tweets hahaha. oh yeah, just wait until it hits positive negative
other regions @

occasionally leads to incorrect “true” labels for
Tweets. Given that the VADER classification rep-
resents our ground truth, these errors reduce our
F-1 scores at times when our model’s predictions
are actually correct. This problem was one of the
drawbacks of using the output of a classification
algorithm as our ground proof, but it was a cost
we were willing to pay in exchange for the ben-
efits of automated labeling. To combat this error,
we could increase our threshold for the VADER
algorithm and manually correct mislabeled exam-
ples (although this would be time-intensive).

Secondly, our models often fail to detect sar-
casm, particularly when the sarcasm is represented
by an emoji. For the Table 2 sarcasm example, our
models view the smiling and laughing emojis in
a positive light, while the user is actually react-
ing negatively to another person’s actions. Given
the complexity and context needed to detect sar-
casm, combined with humanity’s imperfect ability
to detect sarcasm, this proves to be one of the most
difficult NLU tasks. Again, perhaps with a larger
dataset our deep learning models would more ef-
fectively learn to identify sarcasm.

“Fake” emoji usage also led to misclassification
in many cases. In the Table 2 example, the user
uses a smile out of spite, which causes our models
to incorrectly classify the Tweet as positive. This
misleading smile and the use of “note to self” are
nuances of the English language that are difficult
to take into account, similar to the problems asso-
ciated with sarcasm. Once again, our model would
need to understand the intricacies of the English
language or place a smaller weight on the emoji in
order to correctly classify Tweets of this nature.

Lastly, many of the Tweets are neutral or am-
biguous in nature. Because our models classify
every Tweet as positive or negative, there is an in-
creased chance of error for Tweets that lack con-

text or intense emotion. Oftentimes, as in the
neutral/ambiguous example in Table 2, we can-
not know whether a Tweet is meant to be posi-
tive or negative without more context. Given that
the shocked emoji could be perceived in a positive
or negative light, the neurtral/ambiguous example
could be talking about a popular new song or a
devastating hurricane spreading to other regions.
We could mitigate this error by using a more strict
threshold for VADER results, but again this would
require gathering a much larger number of Tweets.
We additionally could look to change our problem
to multiclass classification by beginning to also
predict neutral Tweets.

7 Conclusions

We have demonstrated that emoji handling clearly
increases one’s ability to conduct effective Twitter
sentiment analysis.

Today informal mediums such as Twitter are
more relevant than ever. Twitter remains a useful
communication tool between friends, but it has be-
come a public message board where average users,
brands, and even public figures such as politi-
cians and athletes regularly share their opinions
or contribute to discussions. Because Twitter is
so widely used globally, the ability to perform ac-
curate sentiment analysis, gauging public opinion
and perception on any number of topics, is more
valuable than ever before. The significant perfor-
mance increases illustrated in our results show that
any modern Twitter sentiment analysis application
that is not processing emojis effectively is at a ma-
jor disadvantage.

Emojis often represent emotions or sentiments
that are not easily concisely expressed in words.
The number of emojis available and the contexts
in which they are used has evolved dramatically
in recent years and will likely continue to do so



moving into the future. Emoji handling is an
interesting Natural Language Understanding sub-
problem, and continued developments will only
serve to increase the power of sentiment analysis.

Our results are encouraging, and we have iden-
tified many areas to improve emoji analysis to
further increase Twitter sentiment classification
power.

7.1 Future Work

As mentioned in Section 5, time constraints ham-
pered our ability to conduct proper parameter ex-
ploration. Testing with different parameters is
something we would like to try in the future. In
particular, we believe a bidirectional LSTM could
greatly increase classification power, as this mod-
els offers advantages when it comes to analyzing
text streams. We attempted to run a bidirectional
version of our implemented RNN, but the model
did not finish training in time for the project sub-
mission. Related to these time constraints, bet-
ter utilization of cloud computing services would
likely have allowed us to test different parameter
and feature combinations more efficiently.
Regarding feature functions, we found that
emoji substitution, while an interesting idea, was
relatively ineffective in practice. We would like
to find a better way to produce GloVe embeddings
for emojis. The genesis of our project was that
many Twitter sentiment analysis datasets available
online are outdated because they do not contain
emojis. There may be some aspects of the cur-
rent GloVe Twitter embeddings that are outdated
as well. For example, Pennington, Socher, and
Manning provide a Ruby script that handles emoti-
cons when preprocessing datasets to prepare them
for usage with the GloVe Twitter word embed-
dings, but there was no evident emoji handling in
the script (Pennington et al., 2014). Inspired by
this, it may be beneficial to train the GloVe algo-
rithm on “modern” Twitter data, creating a new set
of GloVe embeddings for Twitter data. We would
need to use a more representative modern Twit-
ter dataset, as described below (not one where ev-
ery Tweet must contain an emoji), and to maxi-
mize the effectiveness of the GloVe algorithm, we
would preprocess our set of Tweets using a combi-
nation of the provided Ruby preprocessing script
and our emoji separation method. As the Ruby
preprocessing script currently is written, their is
no emoji-specific handling. Emojis are often in-

cluded next to a word without a space, which leads
them to be interpreted by the GloVe algorithm as
part of the word. By separating emojis as their
own “words,” we may develop a stronger set of
GloVe Twitter embeddings.

Related to a new set of GloVe embeddings,
while we collected a small dataset of Tweets that
contained emojis, our Emoji Dataset was not rep-
resentative of modern Twitter data. Many Tweets
contain emojis, but not all Tweets contain emojis.
It would be an interesting study and would likely
lead to more reliable results if we were to collect
a large dataset without querying specifically for
emojis, instead querying for general trending top-
ics or collecting as many live Tweets as possible.
This would allow us to train our models on a train-
ing set with the same distribution as our develop-
ment and test sets, and it would remove the need
for “fine-tuning” and a dataset like Sentiment140.
Additionally, as mentioned in Section 6, a larger
training set with the same distribution as our test
set would likely increase the performance of our
deep learning models in particular.

Finally, other methods of examining our re-
sults could give us additional interesting insights
into modern Twitter sentiment. One such idea
is an analysis of classification accuracy by emoji
(for example, perhaps one particular emoji is fre-
quently misinterpreted).
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A Appendices

For each model, we chose the parameter and fea-
ture combinations that resulted in the best results
on the Emoji development set for testing. Table 1,
discussed in Section 5, is a presentation of the F-1
score for these models with the chosen parameter
and feature combinations on positive labels on the
Emoji test set.

The following tables are supplementary results
from the same models, displaying performance
on the negative class, performance on the de-
velopment and training sets, and other evalua-
tion metrics. Full results for all possible param-
eter, feature, dataset, metric, and evaluation la-
bel combinations are available in the ‘“results”
directory of our source code, which is avail-
able at https://github.com/dliedtka/
twitter_emoji_sentiment.
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Table 3: F-1 scores for the negative class on the Emoji Dataset test set for baseline and deep learning models. Best results are
bolded for each level of training.

Model Sent140 Sent140+Emojiless Sent140+Emoji
Naive Bayes 0.80711 0.82500 0.96907
MaxEnt 0.77728 0.87567 0.97408
SVM 0.68610 0.86874 0.98017
Shallow 0.79623 0.779930 0.94250
RNN 0.79651 0.82811 0.93730

Table 4: F-1 scores for the positive class on the Emoji Dataset development set for baseline and deep learning models. Best
results are bolded for each level of training.

Model Sent140 Sent140+Emojiless Sent140+Emoji
Naive Bayes 0.84225 0.85198 0.95537
MaxEnt 0.83588 0.87067 0.96689
SVM 0.78414 0.88440 0.97432
Shallow 0.82867 0.83771 0.93673
RNN 0.82117 0.84488 0.93169

Table 5: F-1 scores for the positive class on the Emoji Dataset training set for baseline and deep learning models. Best results
are bolded for each level of training.

Model Sent140 Sent140+Emojiless Sent140+Emoji
Naive Bayes 0.83084 0.85851 0.96150
MaxEnt 0.82746 0.90421 0.98100
SVM 0.77445 0.93826 0.99068
Shallow 0.81233 0.81955 0.92773
RNN 0.82470 0.84475 0.94509

Table 6: F-1 scores for the positive class on the Sentiment140 Dataset development set for baseline and deep learning models.
Best results are bolded for each level of training. We did not evaluate the RNN model on the Sentiment140 development set,
because it was impractical given time constraints.

Model Sent140 Sent140+Emojiless Sent140+Emoji
Naive Bayes 0.77799 0.77817 0.77807
MaxEnt 0.80329 0.62675 0.63035
SVM 0.76382 0.66756 0.66526
Shallow || 0.75384 0.76322 0.75166

Table 7: F-1 scores for the positive class on the Sentiment140 Dataset training set for baseline and deep learning models. Best
results are bolded for each level of training. We did not evaluate the RNN model on the Sentiment140 development set, because
it was impractical given time constraints (1,584,000 Tweets in the training set).

Model Sent140 Sent140+Emojiless Sent140+Emoji
Naive Bayes 0.80575 0.80548 0.80550
MaxEnt 0.81530 0.62728 0.62979
SVM 0.76495 0.66968 0.66441
Shallow I 0.74999 0.76362 0.74824




Table 8: Accuracy scores for the positive class on the Emoji Dataset test set for baseline and deep learning models. Best
results are bolded for each level of training.

Model Sent140 Sent140+Emojiless Sent140+Emoji
Naive Bayes 0.82727 0.84091 0.97045
MaxEnt 0.80985 0.87652 0.97500
SVM 0.74697 0.87500 0.98106
Shallow 0.81970 0.81061 0.94167
RNN 0.82348 0.84621 0.94091

Table 9: Precision scores for the positive class on the Emoji Dataset test set for baseline and deep learning models. Best
results are bolded for each level of training.

Model Sent140 Sent140+Emojiless Sent140+Emoji
Naive Bayes 0.79355 0.81242 0.96264
MaxEnt 0.76024 0.90248 0.97515
SVM 0.69541 0.87000 0.97270
Shallow 0.78200 0.76370 0.99029
RNN 0.77709 0.80928 0.92426

Table 10: Recall scores for the positive class on the Emoji Dataset test set for baseline and deep learning models. Best results
are bolded for each level of training.

Model Sent140 Sent140+Emojiless Sent140+Emoji
Naive Bayes 0.90044 0.90044 0.98097
MaxEnt 0.92387 0.85359 0.97657
SVM 0.90922 0.89165 0.99122
Shallow 0.90337 0.91801 0.89605
RNN 0.92387 0.91947 0.96486




