
Linear Array Target Motion Analysis Using POMDPs

Joe Goldfrank
Department of Management Science & Engineering

Stanford University
goldrank@stanford.edu

David Liedtka
Department of Computer Science

Stanford University
dliedtka@stanford.edu

Greg Forbes
Department of Civil & Environmental Engineering

Stanford University
gforbes@stanford.edu

Abstract

We demonstrate application of Partially-Observable Markov Decision Processes
(POMDPs) to a target-tracking problem using mobile side-looking linear array
sensors, developing policies for maintaining target track while avoiding collisions
using Monte Carlo Tree Search and global-approximation naïve Q(λ) learning
with particle filter state estimation, adding a synthetic state variable to quan-
tify state uncertainty. These techniques have applications wherever mobile side-
looking linear arrays are used, such as wide-area aerospace (radar) and maritime
(sonar) sensing and tracking problems.

1 Introduction

We investigate the case of tracking and search of a two-dimensional space by a mobile sensor, where
the sensor is directional and has sensor axis fixed in relation to the mobile sensor’s direction of
motion. Pointing the sensor affects both what it is looking at as well as where it is moving to. The
mobile sensor will be used to search for a non-cooperative mobile target and should be able to locate
the target and then maintain continuous contact with (follow) the target indefinitely. Collision with
the target is possible and should be avoided.

Many types of sensors benefit from having as large an aperture size as possible; a mobile sensor–
a sensor integrated with a vehicle– can have a smaller overall size by having the sensor be of fixed
direction, as this removes all machinery required to move the sensor relative to the vehicle. Examples
include, but are not limited to, side-scanning sonar common on Unmanned Underwater Vehicles and
certain search radars used on aircraft and spacecraft. Decision-makers must actively manage the
relationship between vehicle positioning and sensor employment.

Furthermore, because of physical configuration, these sensors are often side-looking; because of
drag, vehicles in fluid domains are often ‘long and thin.’ Aperture size is maximized by using the
length of the vehicle, resulting in a side-looking sensor. Due to the geometry of beamforming, these
sensors’ resolution is not uniform with respect to relative bearing: resolution may be excellent at
90° relative and mediocre at 30° relative to the direction of sensor motion.[1] Pointing the mobile
sensor therefore affects the vehicle’s motion, where it is looking, and how well it is covering those
areas.

As Partially-Observable Markov Decision Processes (POMDPs) and Reinfrocement Learning have
successfully been applied to other target tracking and collision-avoidance problems, we selected
these methods for application to this use case.

2 Related Work

Work related to our analysis spans the literature of linear array beamforming, controls and algorithms
for unmanned systems, Reinforcement Learning and POMDP use for target tracking of unmanned
systems, and unmanned system collision avoidance.

Control systems and algorithms of autonomous systems is an active area of research in aeronau-
tics, astronautics, and robotics. Sensing and control for vehicles in numerous domains has been
demonstrated with methods ranging from rules-based algorithms to POMDPs and deep reinforce-
ment learning. W. Schwarting et al. provide a recent survey of methods.[2]

The work performed by C. Eaton et al. provided more in-depth techniques within the literature
regarding the methods and capabilities of path-planning and target tracking. This work categorizes
the path planning as fixed target, moving target, and target search and surveillance, with emphasis on
the advancement of the later. Recommendations have been provided to emphasize research in sensor
and sensor data for decision-making so that autonomous control methods can be better enabled when
following a desired target(s).[3]

POMDPs have more recently been implemented in target search and surveillance tasks. S. Ragi et
al. tracks multiple targets by taking advantage of the flexibility of the POMDP structure. This work
incorporates a variety of parameter features including variable-speed, aerodynamic drag, collision
avoidance, and track swap, among others. The utility of this work is derived from the generality and
flexibility of POMDPs, which recommends their use as a framework to incorporate other features of
interest in target search and surveillance problems.[4]

3 Methods

3.1 Problem Structure

We modeled a simplified discrete-time discrete-action target search repesenting the constraints of
Section 1 in the Julia programming language. Our state space used relative polar coordinates, and
was comprised of relative distance r and angle θ of the target to the sensor, the target’s relative
course, and the sensor’s speed. The target speed was modeled as fixed. The target’s motion was
modeled as a random walk, maintaining course with probability 0.9 and turning either l30° left or
30° right, each with probabiltiy 0.05. The action space consisted entirely of sensor course and speed
maneuvers: 0° (no change), 30° left, or 30° right course changes, and speed either equal to or twice
the target’s speed. All actions were available from all states.

The sensor was modeled as an approximation of a on-motion-axis linear array with a forward null,
as shown in Figure 1.

Figure 1: Sensor Configuration

2

Observations are based on r and θ at each time step. If the target is in an observation zone and closer
than distance R, that zone’s observation will occur at the time step. If the target is in an observa-
tion zone with range between distances R and R′, that zones observation occurs with probability
inversely proportional to relative distance (1r) from the sensor. If the target is not in any observation
zone, no observation occurs at the time step.

We performed state estimation using a Sequential Importance Resampling Particle Filter imple-
mented using the ParticleFilters.jl library.[7] State estimation performance was validated
with test cases prior to implementing the problem solution methods.

3.2 Reinforcement Learning

We implemented several variations of the Q-learning family of algorithms described in [5] and
[6]: global-approximation Q-learning, global-approximation Watkins’s Q(λ), global-approximation
naïve Q(λ), and local-approximation naïve Q(λ). A variation of global-approximation naïve Q(λ)
demonstrated the best performance.

We implemented a polar-coordinate coordinate approximation scheme by extending the multilinear
grid interpolation GridInterpolations.jl package[8] to use polar coordinates, accounting for
the behavior of state variable θ by introducing a 360° state that is merged with the 0° state after
interpolation.

We used this coordinate approximation scheme for global approximation rather than local approxi-
mation by adding the weights of each particle in the particle filter into a combined state, and then
taking the variance of these weights to generate an additional synthetic state representing variance
of particle distribution. This method is shown in Algorithm 1.

Algorithm 1 Global Approximation With Variance
1: function GLOBAL APPROXIMATION(particles)
2: Initialize β
3: for p ∈ particles do
4: ξ ← INTERPOLANTS(p)
5: β ← β + ξ

6: NORMALIZE(β′)
7: ν ← var(β)

8: for b⃗ ∈ β do
9: b← CONCATENATE(b, ν)

10: return β

We included three synthetic “variance" states in the cooridnate approximation scheme, correspond-
ing to high, medium, and low variance, tunable with a hyperparameter. The global approximated
state was then used in a naïve Q(λ) algorithm until desired performance was achieved.

3.3 Monte-Carlo Tree Search

In addition to offline reinforcement-learning-based methods, we also computed an online solution,
in which real-time computation determines the action taken. The problem dynamics suggested that
satisficing solutions exist and optimality was not required. To this end, we implemented a modified
version of Monte Carlo Tree Search (MCTS) extended to POMDPs. Computational load is reduced
by only interrogating states reachable within a finite time horizon from the current state.

Our MCTS implementation is largely identical to that of Algorithm 6.12 of [5], the sole difference
being that instead of recycling past computation by advancing the history tree after selecting an
action, we achieved best results by reinitializing the algorithm at each time step. We believe this
is due to specific problem dynamics: observations correspond to wide ranges of states (for which
different actions maximize reward) and individual rewards to do not unambiguously resolve target
bearing.

The other implementation choices we made were terminating the loop over MCTS simulations after
100 iterations and using a random rollout policy. While we considered that in practice one might

3

continue iterating until a decision must be made (which we could have achieved using a timed
loop), we found the algorithm had converged by 100 iterations and continued iterations thus wasted
computation— as this algorithm would be run in real time, we are sensitive to its computational
complexity. For our rollout policy, we chose random actions until we reached the specified depth.

4 Simulations

For each simulation, we chose a starting state (with a random range r between 25 and 100, a random
relative bearing θ, a random relative course, and vehicle speed of 1) and assumed perfect knowledge
of the initial state. We implemented a reward function based only on state, with a large negative
reward for a collision, a small negative reward for the target range exceeding the maximum sensor
range, and a small positive reward otherwise. We then iterated over 500 time steps, ending the
simulation early if the sensor collided with the target.

4.1 Reinforcement Learning

For the global-approximation naïve Q(λ) approach, we impemented both softmax and ϵ-greedy ex-
ploration strategies, decreasing the exploration rate both over time and in response to algorithm
performance (average reward over a set number of training epochs). We found that the performance
was extremely sensitive to choices of discount factor γ, eligibility trace discount factor λ, learning
rate α, and to the exploration strategy, with α = 0.7, γ = λ = 0.9 with ϵ-greedy performing well.
Results are detailed in Section 5.

4.2 Monte-Carlo Tree Search

For MCTS, we first ran experiments over up to 100 trials to tune parameters before running an exper-
iment over 1,000 trials with our optimal set of parameters. The tunable parameters were the depth
d, the exploration constant c, the discount factorλ, and the number of iterations per action chosen.
We used values of c = 20, discount factor λ = 0.95, and 100 iterations, and experimented with
depth parameters of 1, 5, 10, 25, and 100. However, as explained further in Section 5, we achieved
maximum reward in all of our trials for all depths excluding depth 10. Thus, there was no need to
tune the other parameters and we chose to use a depth of 1 since it required the least computation
(with a depth of 1 we could run roughly 60,000 MCTS simulations per second, but only 2,500 per
second with a depth of 1001). Additionally, we conducted MCTS experiments without assuming
perfect knowledge of the initial state (we assumed only that we knew the target was somewhere
between range 25 and 100 and that our own speed was 1).

5 Results and Discussion

We measured performance by per-epoch tracking loss percentage and collision percentage over 500
time steps. A random action policy measured over 12,000 epochs resulted in 47.5% tracking loss
rate and 15.4% collision rate.

5.1 Reinforcement Learning

As mentioned in Section 4, the global-approximation naïve Q(λ) approach was very sensitive to
choices in hyperparameters, and would converge on a good policy very slowly when we chose these
parameters poorly. We ran the algorithm on small-time step epochs to determine better hyperpa-
rameter choices, and then ran the best-performing combination for 20,000 500-time-step training
epochs. We then tested our results over 2750 trainng epochs, measuring a 0.95% tracking loss rate
and a 0.54% collision rate, greatly improved performance compared to the random policy. An exam-
ple policy result (representing only two of five state dimensions) is shown in Figure 2. Each color
represents one of the six possible action choices.

We had previously implemented the other variations on Q-learning and Q(λ), but these did not
achieve good results until we added the synthetic state to account for particle filter variance. While

1Single-threaded on an 8th-generation Intel i7 x86 processor.

4

Figure 2: Policies at Approximation Points

we qualitatively recognize why accounting for degree of state uncertainty improves the algorithm’s
performance, we do not yet have a method for quanitfying this performance improvement.2

5.2 Monte-Carlo Tree Search

MTCS performed perfectly (no tracking losses or collisions) for depths of 1, 5, 25, 50, and 100
(there was a non-zero tracking loss rate for depth 10) up to 100 trials. Then, we chose the least
computationally intensive depth of 1 and found that MTCS performed perfectly for each of 1,000
random trials. Additionally, we replicated the same success with MCTS over 1,000 trials when we
did not assume perfect knowledge of the start state (we randomly initialized our particle filter belief
state in the range of 25 to 100).

We suspect MCTS was effective using a depth of 1 due to the relatively forgiving problem structure
and the effectiveness of the particle filter. The likelihood of the target changing course at any time
step is low, allowing our vehicle to effectively take action to avoid negative reward states before
being reached. Because the particle filter works well, the vehicle takes these preventive actions with
high certainty.

While it is unclear exactly why depth 10 performed worse over 100 trials than lesser and greater
search depths, we suspect that at this depth there was greater potential for generative simulations to
separate from actual outcomes but there was not enough depth to allow for correction. We likely
could have remedied this problem by tuning λ, but with better solutions available there was no need
to do so. We also recognize that a larger number of trials would have yielded different results for
other depths.

2We were not able to find examples of this technique in a survey of the literature, but look forward to the
teaching team’s feedback regarding other impementations and methods for improvement.

5

MTCS was the best-performing of our solution approaches, and was able to continuously track the
target without loss of contact or collision. Additionally, we avoided the need for discretization
of states, being able to track continuous states using particle filter state estmation and randomly
sampling the population of particles. Finally, the assumptions required of the initial state were
minimal, and MCTS requires no prior training.

The drawback of MCTS is that, as an online method, it requires real-time computation and cannot
execute deterministically. It is also possible that the performance will not generalize to other linear
array tracking problems with different dynamics. Whether or not the real-time computational re-
quirements of MCTS are a drawback depend on the domain application: larger and slower-moving
unmanned autonomous maritime systems, such as those in the maritime domain, have longer time
steps and more available computing resources, whereas small fast systems, such as small aerial
drones, may be too compute-constrained to implement MCTS.

6 Conclusions and Future Work

We intend to extend the model, which uses simplified motion and obsevation dynamics, to better
capture the dynamics or real-world problems. The sensor model shown in Figure 1 uses circular
arcs to represent observation regions which, with real linear arrays, are actually described by two-
dimensional conic sections (hyperbolas, parabolas, and ellipses). Our observation model is designed
to be extended to sensor regions of arbitrary shape; implementing conic sections is a natural next
step of this work.

Further, there is additional work to be done implementing Reinforcement Learning algorithms on
this class of problem; some obvious next steps include global-approximation Sarsa(λ), deep rein-
forcement learning, and hyperperameter tuning for the global-approximation Q(λ) method. Further-
more, we would like to investigate and formally characterize performance and utility of the synthetic
“variance" variable. We also see value in methods to parallelize the methods we have already imple-
mented in order to reduce training time.

The MCTS method would also benefit from parallelization, specifically because runtime is critical
for application of online methods to fast-moving real-time problems.

Other steps include empirically testing additional offline and online methods as we extend the model
to encompass additional and alternate problem dynamics— as we have only tested our model on one
use case, we have no indication of how it generalizes.

We also would like to conduct validation and verification of the outputs of our methods using tech-
niques such as Failure Probability Estimation, Most Likely Failure Estimation, and Failure Catego-
rization, in order to better understand when and why our techniques do not succeed.

6

Contributions

Joe Goldfrank contributed the generative model of the problem, including the state transition model,
the observation model, the particle filter implementation, and the global approximation model; he
implemented the global-approximation Q-learning and global-approximation Q(λ) methods. David
Liedtka implemented the online Monte Carlo Tree Search method. Greg Forbes contributed polar
coordinate transformations for the generative model, as well as the local approximation model, and
he implemented the local-approximation Q(λ) method. All team members assisted in debugging
and testing each others’ code and in preparation of the final report.

References

[1] Richard P. Hodges (2010). Underwater Acoustics - Analysis, Design and Performance of Sonar. pp 27-34.
John Wiley & Sons.

[2] Wilko Schwarting, Javier Alonso-Mora, Daniela Rus (2018) Planning and Decision-Making for Au-
tonomous Vehicles, Annual Review of Control, Robotics, and Autonomous Systems 1:1, 187-210.

[3] C. M. Eaton et al. , (2016) Multiple-Scenario Unmanned Aerial System Control: A Systems Engineering
Approach and Review of Existing Control Methods, Aerospace, vol. 3, no. 1, pp. 126.

[4] S. Ragi and E. K. P. Chong (2015) UAV Guidance Algorithms Via Partially Observable Markov Decision
Processes, Handbook of Unmanned Aerial Vehicles, pp. 1775–1810. K.P. Valavanis, G.J. Vachtsevanos, Eds.,
Netherlands: Springer

[5] M. Kochenderfer (2015) Decision Making Under Uncertainty — Theory and Application, The MIT Press

[6] R. Sutton and A. Barto (2018) Reinforcement Learning — An Introduction, The MIT Press

[7] ParticleFilters.jl No version stated, library retrieved 25 October 2019 https://github.com/
JuliaPOMDP/ParticleFilters.jl

[8] GridInterpolations.jl No version stated, library retrieved 25 October 2019 https://github.com/
sisl/GridInterpolations.jl

7

https://github.com/JuliaPOMDP/ParticleFilters.jl
https://github.com/JuliaPOMDP/ParticleFilters.jl
https://github.com/sisl/GridInterpolations.jl
https://github.com/sisl/GridInterpolations.jl

	Introduction
	Related Work
	Methods
	Problem Structure
	Reinforcement Learning
	Monte-Carlo Tree Search

	Simulations
	Reinforcement Learning
	Monte-Carlo Tree Search

	Results and Discussion
	Reinforcement Learning
	Monte-Carlo Tree Search

	Conclusions and Future Work

