
Simulated Season
David Liedtka

dliedtka@stanford.edu

1 Introduction

I have always been interested in the way that statistics quantify athletic performance, par-
ticularly in the United States’ three largest professional sports leagues, the National Football
League, Major League Baseball, and the National Basketball Association. In recent years,
the emphasis on advanced analytics and the use of machine learning has been most visible
in basketball in my opinion, with the rise of controversial figures in the NBA such as Sam
Hinkie, currently a guest lecturer at the Stanford Graduate School of Business. Many ad-
vanced metrics exist today, such as win shares or value over replacement player, that quantify
a player’s performance much more completely than simple stats that have been relied upon
heavily in the past, such as points or rebounds per game. However, these metrics quantify
a players past performance. For my project, I wanted to see if I could effectively predict a
player’s future performance by projecting a variety of statistics. Additionally, because in the
NBA what ultimately matters most are wins and losses, I wanted to see if I could use those
projections to better predict game outcomes.

2 Task Definition

Broadly, my project involves two goals:

1. Statistical projection

2. Game outcome prediction

I sought initially to frame the first goal, statistical projection, as a regression problem
using stochastic gradient descent using a multitude of features, including past performance
data for each player. However, this problem is more complex than it would appear, as
training is dependent on each individual player. I eventually broke this goal down into two
sub-tasks, predictions for veteran players and prediction for rookie players. For a veteran
player, with many seasons of NBA experience, past performance is perhaps the best indicator
of future performance. For a rookie player, playing in his first professional season, we do
not have past performance data to rely on for training, creating a dependence on less telling
characteristics, such as height and weight or college statistics, which can be unreliable. Even
more challenging, many players come from an international background and do not even have
American college basketball experience for our consideration. Thus, for veteran players, I
perform a standard regression using stochastic gradient descent to minimize squared loss,
but for rookie players I implement the K-nearest neighbors algorithm to find several players
from the past that the rookie is expected to perform similarly to. The second outcome, game

1



prediction, is a more straightforward task that I formulated as a classification problem using
support vector machines.

Game prediction is difficult, particularly in the NBA, because (according to extremes in
winning percentage) the “better” team does in fact win more often than in sports such as
baseball, but “upsets” (when the team that is not expected to win does win) still occur. If
you develop a probabilistic model that says, for example, Team A will beat Team B 51% of
the time, then the optimal prediction is to choose Team A to win 100% of the time unless
you are able to develop intuition about when an upset is likely to occur. I sought to develop
this intuition by including features in my classification that encompassed wear and tear on
a team and individual position match-ups with the opponent.

3 Infrastructure

As my project is a task in machine learning, I first needed to collect data for training, valida-
tion, and testing. Basketball Reference (basketball-reference.com) contains comprehensive
data relevant to both of my goals of statistical projection and game outcome prediction. To
compile this data, I built a web scraper and used regular expression matching to download
the “totals” and “advanced” career statistics for every player that played in an NBA game
in the 2013-14, 2014-15, 2015-16, 2016-17, and 2017-18 seasons. This meant, for example,
that for a player like LeBron James, who first appeared in the 2003-04 season and is still
an active players, I compiled each of his season statistics from 2003-04 to 2017-18 into my
dataset. I also downloaded each player’s height, weight, handedness, when they were selected
in the NBA draft, teams played for each season, position played each season, and the player’s
career college statistics if they attended American college. For a full list of statistics that
I downloaded, view the statistics that I reported results on in the Appendix. Additionally,
to enable game prediction, I used the web scraper to compile each team’s regular season
schedule from the 2014-15, 2015-16, 2016-17, and 2017-18 seasons. Additionally, I tracked
which team was home for each game, which team was away, the date the game occurred,
and which team won.

Having compiled the data, I experimented with normalizing the statistical data in a
number of ways. First, I normalized all statistics that were not already rates on a per
minute basis. For example, rather than storing how many points a player scored in a season,
I stored his points scored per minute played. The only statistics I did not normalize were
already rates (such as minutes per game or win shares per 48 minutes) or did not make
sense to normalize (such as games played or minutes played). Next I experimented with
removing outliers. A player who appeared only very briefly in a season and recorded one
very positive (or one very negative) play could have an impact on statistics. For example,
if a player appeared in only one minute of one game all year but made his only shot, his
shooting percentage of 1.000% could lead him to be artificially overrated. Thus, for each
player who appeared in less than ten minutes of game action in a season, I zeroed out all
statistics. Finally, I experimented by scaling each statistic by different ranges (I would undo
this scaling before computing prediction error). I tried leaving statistics as they were, scaling

2



from -1 to 1 (meaning out of all players in the dataset, the player with the lowest points
per game over the course of a season would be scaled to -1, and the player with the highest
would be scaled to 1), and scaling from 0 to 1. Interestingly, I found that removing outliers
and the type of scaling I used did not have a significant impact on any results, so by default
I removed outliers and scaled from -1 to 1.

4 Approach

4.1 Statistical Projection

Having decided to model statistical projection as a regression problem, I broke the task
down into two sub-tasks, using k-nearest neighbors for rookie players and linear regression
for veteran players. Before implementing these models, I developed a baseline and an oracle.
A simplified approach for evaluating players is to judge them based on their past statistics,
so for my baseline for veterans for predicting 2017-18 season statistics, I predict using their
2016-17 statistics (the previous season) exactly. For rookie players, as a previous season is
unavailable, I predict each player’s statistics as an average of every non-rookie player’s (in
my dataset) rookie season statistics, meaning each rookie receives the same prediction. As
my oracle, training on all data from seasons prior to 2017-18, I develop a linear regression
model for each statistic with each other statistic as a feature. For example, when testing,
to predict a player’s points per minute in the 2017-18 season, I use all other statistics as
features for that season, such as the players rebounds per minute, win shares per minute,
and shooting percentage. Clearly, this type of prediction is at an advantage because if you
are trying to predict statistics for a season that has yet to occur, you will not have access
to a partial set of statistics from that future season. I use the same oracle for rookies and
veterans. The baseline and oracle results can be found with the rest of the results in the
appendix.

For rookies, I implement K-nearest neighbors. Using normalized features such as height,
weight, handedness, draft position, rookie age, position played, college attended (if applica-
ble), and a weighted average of college statistics (if applicable; accomplished by averaging
statistics over all years played in college, weighing each more recent season twice as much
as the previous), for each rookie player I find the eight non-rookie players with the clos-
est feature-set Euclidean distance. Then, weighted by each of the eight players’ Euclidean
distance from the rookie, I predict the rookie’s statistics using a weighted average of the
neighbors’ rookie seasons. As there is no “training” that occurs here, I do not measure
training error, but I do record validation error. I run ten trials, each time choosing a differ-
ent random set of 10% of players to serve as a validation set. However, when it came time
for testing, as no parameters are learned and I thought it beneficial to have as many options
for “neighbors” as possible, I include those in the validation sets as possible “neighbors”.

For veterans, I implement stochastic gradient descent, minimizing square loss and using
regularization. For each statistic I predict, I train a model on all seasons up to and including
the 2015-16 season. I use the same set of features that I used for rookie predictions but with

3



the addition of a weighted average of past professional season statistics. For example, if a
player has played in three seasons prior to the one being predicted, as a feature for his career
points per minute, I sum 1/7 times his points per minute in his first season, 2/7 times his
total in his second season, and 4/7 times his total in his third season. The intention is to
give recent performance the most weight, but also to acknowledge trends in a player’s career
and to safeguard to a degree from factors such as injuries. For validation, I predict statistics
from the 2016-17 season, and for testing I predict 2017-18 statistics. Using the validation
set, I experimented with multiple eta and regularization parameters.

For both rookies and veterans, I use root mean square error as the measure of error I
attempt to minimize. I compute the root mean square error for each statistic by comparing
the predicted 2017-18 statistic for each player to the true 2017-18 statistic. Because the
validation set was not randomly generated (except for K-nearest neighbors) and therefore
would be the same for each trial, running multiple trials produces identical results. Thus, I
ran only one trial for statistical projection.

4.2 Game Outcome Prediction

I implement multiple classification models useful for gaining insight into game prediction.
For my baseline, I simply choose a random winner, expecting to choose correctly half of
the time. My oracle is more involved and mirrors my implementation. My intuition was
that exploiting features such as fatigue and individual players match-ups would make upset
prediction easier. Therefore, for my oracle, I used the same features that I will describe
below, but I used the true future (2017-18) statistics for predicting futurue (2017-18) game
outcomes. Again, baseline and oracle results can be found in the appendix.

“Home-court advantage” is a commonly-discussed phenomena in sports, and it is espe-
cially relevant in basketball. I wanted to provide several models that could provide insight
into game outcome prediction, so the first I implement simply predicts the home team as
the winner in each game.

Next, I wanted to incorporate factors that could encompass team fatigue from game to
game. It is often surmised that NBA teams do not perform as well if they have played
games in back-to-back nights or have played three games in four nights. Therefore, for
this model, I implemented classification using support vector machines (minimizing hinge
loss with regularization) and included as features the home team, the away team, the date,
whether the home team was playing in the second of games on back to back nights (and the
same for the away team), and whether the home team was playing in the third of games in
four nights (and the same for the away team). Using the validation set, I experimented with
multiple regularization and eta parameters.

Next, to develop some intuition about including features to exploit player match-ups, I
include the same fatigue features but also introduce features based on the previous season’s
statistics. For example, for a game taking place during season n between teams A and B, I
first generate a list of each player who played for team A and team B during season n. Then
for each position (point guard, shooting guard, small forward, power forward, and center)
for each team, I generate a feature for each statistic by taking a minutes played-weighted

4



average of that statistic (from season n− 1 for each player at that position. For example, if
team A had two players that played point guard in 2017-18, and if player 1 played twice as
much as player 2 during 2016-17, then the feature for team A’s point guard points per minute
in 2017-18 would be 2/3 times player 1’s 2016-17 points per game plus 1/3 times player 2’s
points per game in 2016-17. This model can be viewed as another baseline, providing a
comparison to develop intuition about the value of using projected statistics rather than
past statistics.

Finally, I repeated implementing the model described above, but I used projected statis-
tics for 2017-18 and actual statistics for all previous seasons rather than the previous season’s
statistics. I used my projected statistics from statistical projection as input features for these
outcome predictions.

My original plan was to use all seasons prior to 2016-17 as training data, all 2016-17
seasons as a validation set, and all 2017-18 seasons as the test set, as I did with statistical
projection. However, because game prediction included features based on what teams were
playing, I thought it would be beneficial to train on outcomes that occurred most recently
compared to the season I would eventually try to predict, 2017-18. Thus, instead of using
2016-17 outcomes as a validation set, I used a random sample (of 10%) of games over the
2014-15, 2015-16, and 2016-17 seasons as the validation set.

For each of these models, I used accuracy (number of games predicted correctly out of
number of games predicted total) as my measure of accuracy that I attempted to maximize.
For each model, I ran 100 trials (differing randomly generated validation sets lead to different
results for each trial).

5 Literature Review

Applying machine learning to predict sports outcomes or statistics has become increasingly
popular, especially with the advent of fantasy sports and the rise in popularity of sports
betting. Porter suggests viewing the progression of career statistics on a year-to-year basis
as a time series, and ARIMA to make fantasy football predictions[2]. It is intuitive to view
season-by-season statistical projection as a time series. Hermann and Ntoso formulated the
problem differently to optimize winnings on DraftKings, using regression for game prediction
rather than classification[1]. Wheeler attempts a players points scored prediction that he ties
into game outcome prediction, a sentiment similar to my attempts to predict game outcomes
using statistics, but I use a wider set of statistics as features[3].

These previous studies provide valuable insight into past approaches towards similar
problems, but my task differs from each of these studies in a variety of ways.

6 Results

A full presentation of statistical projections root mean square error, including comparison
to the baseline and oracle, is available in Appendix A.1.

5



The following tables summarizes the accuracy of the different game prediction models:

Table 1: Game prediction accuracy for different models over 100 trials.
Accuracy

Model Training Validation Testing

Random (Baseline) 0.5008 0.4994 0.5013
Home 0.5773 0.6284 0.5788
SVM-F 0.5625 0.5464 0.5138
SVM-F,LP 0.6311 0.6912 0.6186
SVM-F,PP 0.6771 0.6994 0.4512
SVM-F,TP (Oracle) 0.6771 0.6994 0.6634

Where “Random” is the model that chooses a winner randomly, “Home” always chooses
the home team, “SVM-F” is the model using support vector machines and team fatigue
features, “SVM-F,LP” uses support vector machines with last year’s player statistics in
addition to team fatigue features, “SVM-F,PP” uses projected 2017-18 statistics, and “SVM-
TP” uses the true 2017-18 statistics.

7 Analysis

7.1 Statistical Projections

My results prove that both goals, statistical projection and game outcome prediction are
difficult tasks to accomplish. For statistical projection, in Tables 3 and 4, in all cases
we see that the oracle outperforms our models, and usually does so substantially. Still,
from a practical purpose, future results are never readily available. Therefore, compared to
the alternative of using the previous season’s statistics (the veteran baseline) or averaging
multiple players’ performances (the rookie baseline), our projections are valuable if they
outperform the baseline.

We find generally mixed results when it comes to outperforming the baseline. For rookie
results, our test results outperform the baseline in 53.1% of measured statistics. For veteran
results, however, out test results outperform the baseline in only 12.8% of measured statistics.

After initially experiencing overfitting, regularization was added to veteran projections,
and it appears to have worked, as there is no discernible pattern between veteran training,
validation, and test error. However, the validation error for K-nearest neighbors is consis-
tently and noticeably lower than the test accuracy. This is likely because ten trials were run
measuring validation accuracy for rookies, using a random subset of players who were not
rookies in 2017-18 as the validation set every time. Meanwhile, for testing the set of rookies
in 2017-18 was used. The 2017-18 rookie class was wildly unpredictable, with Ben Simmons,
Jayson Tatum, and Donovan Mitchell surpassing expectations with players like Markelle
Fultz and Josh Jackson falling far short. It is possible that the set of potential “neighbor”
for 2017-18 rookies was not as representative as it was for players who were rookies in any
number of seasons before.

6



Regarding the lack of success in surpassing the baseline for veteran results, using the
previous year’s statistics is a simple strategy, but it is a relatively effective strategy. Most
players tend to perform similarly over the course of their careers, but every year a few players
rapidly ascend or tail off in performance. Using linear regression, we hoped to capture those
trends. This largely failed for a number of reasons.

First and foremost, the use of a linear predictor for such a complex problem is not ideal.
Linear prediction limited my use of past performance, as I had to maintain identical feature
sets for each player. This led to me needing to use a weighted average of career statistics
rather than having features tied to each season. For example, I could not include a set
of features for a player’s third career season, because then a player who had only played
two seasons would be interpreted as having recorded statistics of zero throughout a third
season they had yet to play. I briefly considered creating different models depending on
how many seasons a player had played (i.e.- training on all players entering their second
season, then all players entering their third season, etc.), but I thought this would create
dependencies on lesser sets of training data (not many players have played 10 seasons, for
example). For these reasons, if I continue working on this problem in the future, I would
revamp my infrastructure to address this problem as a time series problem.

Additionally, the structure of my validation set may have been problematic. Because I
used all 2016-17 seasons as validation data, there was at least a two year disconnect between
each of my training and testing samples. Basketball is a game in which play style changes
dramatically, and this gap between training and testing may have accounted for some degree
of inaccuracy. Looking back, I may have been better off structuring my validation data
similar to my validation data for rookie players, using a random subset of all seasons instead
of all seasons from 2016-17.

7.2 Game Outcome Prediction

In Table 1, our baseline performs as expected, predicting correctly half of the time. Inter-
estingly, we notice that choosing the home team is a simple but relatively well-performing
method of outcome prediction.

Beginning with our support vector machines, SVM-F performs relatively well for training
but under-performs for testing, despite the use of regularization. While the intention of SVM-
F was to exploit possible team fatigue, the model instead relied more heavily (by virtue
of feature weights) on which teams were playing. Because training occurred on outcomes
dispersed among three seasons, it is likely that those weights were not as dependable when it
came time to predict the 2017-18 season, as none of the 2017-18 games were in the training
data. Again, the NBA is a league that changes rapidly, and our training failed to capture
that.

The results for SVM-F,LP and SVM-F,TP were encouraging, but not initially so. Origi-
nally, I fed features related to every collected statistic into the models. This was clearly an
example of using too many features, as prediction accuracy fell under 50% in both cases.
However, I later decided only to include features related to win shares and value over re-
placement player, two popular advanced analytical statistics. With this change, SVM-F,LP

7



showed that even using the previous years statistics could lead to a significant rise in predic-
tion accuracy. SVM-F,TP showed that in an ideal scenario, prediction power would increase
even more.

My hope was that projected statistics, SVM-F,PP, would find a middle ground between
using past statistics and future statistics. However, because my predictions generally were
worse than the baseline, the results of SVM-F,PP were disappointing. An additional source
of error was likely another disconnect between training and testing. For training, I used true
statistics, but for testing I used projected statistics. For consistency, I should have used
projected statistics throughout, but this would have required me to have saved my training
predictions for statistical projection.

8 Future Work

While my results were mixed, I have identified areas that if addressed could lead to substan-
tial performance increases in the future. First, instead of using linear regression, inspired by
Porter, I considered using an auto-regressive moving average (ARMA) model and treating
season-by-season data as a time series. At the time, implementation was hamstrung because
I thought project requirements prohibited the use of external libraries, and implementing
models such as ARMA myself seemed too daunting. However, in the future, treating my
data as a time series would allow me to better leverage career data.

Additionally, as I mentioned when testing my support vector machine models, I think my
inclusion of too many features may have caused decreases in performance. I considered using
scikit-learn’s recursive feature elimination, but the structure of my algorithm made late-stage
integration infeasible. Ideally, I would have been able to eliminate statistical features into
the support vector machines that were not beneficial, instead of going through myself and
choosing impactful features such as win shares. I also would have been able to apply this
technique to statistical projection, allowing me to eliminate features that were more harmful
than beneficial.

9 Conclusion

Although I failed to achieve all my goals to the degree I had hoped, my experimentation in
different areas allowed for a number of takeaways. We found K-nearest neighbors to be an
effective way to model performance for rookies, a difficult task because historical data does
not exist. The implementation of K-nearest neighbors we used was relatively simple and still
provided encouraging performance, meaning that refining the implementation could lead to
even greater gains.

Statistical projection proved to be too complex a problem for simple linear models, but
representing the data as a time series is a source of optimism for future testing. Although
projected statistics failed to positively influence game outcome prediction, we saw that true
statistics (whether they are from a previous season or from the current season) were sig-

8



nificantly beneficial. By further refining the features included in outcome prediction and
my methods of statistical projection, I hope to see greater prediction accuracy achieved. I
still believe projection-based outcome predictions can be an insightful way to look at sports
analytics, and it is a problem I look forward to continuing to work on in the future.

Acknowledgments

I would like to thank Professor Percy Liang and Kelvin Guu for leading a thought-provoking
and rewarding class, and I would like to thank my project mentor, Jacob Hoffman for his
insightful and personalized feedback. I would also like to thank Basketball Reference for com-
piling an organized and comprehensive set of historical NBA data and making it accessible
to the public.

References

[1] Hermann, E., and Ntoso, A. Machine learning applications in fantasy basketball,
2015.

[2] Porter, J. W. Predictive analytics for fantasy football: Predicting player performance
across the nfl.

[3] Wheeler, K. Predicting nba player performance.

9



A Appendix

A.1 Statistical Projection Results

These tables (on the next page) provide measures of root mean square error for statistical
projections. Table 3 has information for rookies, while table 4 has information for veterans.
Below, each statistic’s abbreviation is defined.

Abbreviation Statistic Abbreviation Statistic

2PAPM 2 point attempts per minute GS Games started
2PP 2 point percentage GSPG Games started per game
2PPM 2 pointers per minute MP Minutes played
3PAPM 3 point attempts per minute MPG Minutes per game
3PAr 3 point attempt rate OBPM Offensive box plus minus
3PP 3 point percentage ORBP Offensive rebound percentage
3PPM 3 pointers per minute ORBPM Offensive rebounds per minute
ASTP Assist percentage OWSPM Offensive win shares per minute
ASTPM Assists per minute PER Player efficiency rating
BLKP Block percentage PFPM Personal fouls per minute
BLKPM Blocks per minute PPM Points per minute
BPM Box plus minus STLP Steal percentage
DBMP Defensive box plus minus STLPM Steals per minute
DRBP Defensive rebound percentage TOVP Turnover percentage
DBRPM Defensive rebounds per minute TOVPM Turnovers per minute
DWSPM Defensive win shares per minute TRBP Total rebound percentage
FGAPM Field goal attempts per minute TRBPM Total rebounds per minute
FGP Field goal percentage TSP True shooting percentage
FGPM Field goals per minute USGP Usage rate
FTAPM Free throw attempts per minute VORP Value over replacement player
FTP Free throw percentage WSP48 Win shares per 48 minutes
FTPM Free throws per minute WSPM Win shares per minute
FTr Free throw rate eFGP Effective field goal percentage
G Games played

10



Table 2: Root mean square error of statistical projection results for rookies.
Rookies Evaluation Type

Statistic Baseline Validation Test Oracle

2PAPM 0.1271822 0.0853715 0.1102053 0.0694203
2PP 0.1946147 0.1233054 0.1988918 0.1714309
2PPM 0.0766426 0.0512767 0.0702685 0.0526191
3PAPM 0.1466386 0.0496596 0.1373063 0.0699842
3PAr 0.2794030 0.1414404 0.2195793 0.1492821
3PP 0.1906027 0.1454785 0.1726784 0.1504758
3PPM 0.0940896 0.0180304 0.0925701 0.0568467
ASTP 8.9039544 6.9212909 7.7787120 2.0827287
ASTPM 0.0595627 0.0390106 0.0515991 0.0190485
BLKP 1.9794341 2.0075799 1.7763658 1.1247150
BLKPM 0.0228316 0.0256372 0.0202953 0.0106629
BPM 8.7912321 4.3037364 9.0176848 5.8715883
DBPM 3.3867500 2.2747163 3.3372224 1.5917227
DRBP 11.041144 6.7298811 12.000342 4.4509754
DRBPM 0.1061800 0.0609821 0.1159320 0.0455188
DWSPM 0.0006130 0.0005876 0.0006288 0.0005123
FGAPM 0.1432276 0.0899041 0.1493192 0.0409580
FGP 0.1503975 0.1121458 0.1561641 0.0550816
FGPM 0.1056569 0.0509165 0.1098624 0.0397406
FTAPM 0.0484582 0.0520891 0.0417629 0.0267278
FTP 0.3069334 0.2193311 0.2954026 0.2411895
FTPM 0.0343632 0.0370646 0.0309403 0.0186353
FTr 0.1648663 0.1952504 0.1594535 0.1374298
G 29.622986 23.259968 24.057657 14.002168
GS 20.023374 20.587360 16.901033 6.9376808
GSPG 0.2875709 0.2890411 0.2559861 0.1179766
MP 739.98331 679.92364 566.58426 201.10051
MPG 8.7570880 7.8488205 7.5465832 5.0445241
OBPM 8.1605222 3.4112209 8.3592637 4.5871242
ORBP 5.0699508 3.5259134 4.1896664 4.3683680
ORBPM 0.0450752 0.0310175 0.0370074 0.0402946
OWSPM 0.0093863 0.0019046 0.0094029 0.0071993
PER 13.714340 5.9554850 13.901074 7.9073441
PFPM 0.0722107 0.0633766 0.0706218 0.0754276
PPM 0.2852356 0.1187052 0.2947476 0.1259680
STLP 1.4830499 0.9937589 1.5055381 0.5735240
STLPM 0.0297845 0.0193033 0.0302545 0.0125445
TOVP 7.1790493 7.1789439 7.3680450 5.3070822
TOVPM 0.0407013 0.0296250 0.0387871 0.0261915
TRBP 6.7991677 4.2162519 6.8480785 1.5977862
TRBPM 0.1216386 0.0746141 0.1224897 0.0326993
TSP 0.1723815 0.1157552 0.1825699 0.0540597
USGP 7.0959000 4.7224607 7.1254070 2.5184761
VORP 0.6455558 0.7788045 0.6401059 0.7880474
WSP48 0.2803634 0.0919097 0.2811465 0.1768436
WSPM 0.0093179 0.0019398 0.0093852 0.0073103
eFGP 0.1746248 0.1172719 0.1886646 0.0489920

11



Table 3: Root mean square error of statistical projection results for veterans.
Veterans Evaluation Type

Statistic Baseline Training Validation Test Oracle

2PAPM 0.0750096 0.0587292 0.0735368 0.0757096 0.0315622
2PP 0.1192205 0.0873232 0.1236591 0.1262712 0.0939476
2PPM 0.0330569 0.0378121 0.0585330 0.0336728 0.0211716
3PAPM 0.0447230 0.0299724 0.0366667 0.0508383 0.0290293
3PAr 0.1263996 0.0866152 0.0948589 0.1411627 0.0876196
3PP 0.1463931 0.1466732 0.1327629 0.1455416 0.1142450
3PPM 0.0210366 0.0139880 0.0177344 0.0232544 0.0167801
ASTP 5.4245708 4.4136420 4.9909833 5.9047276 1.5063530
ASTPM 0.0340482 0.0270521 0.0322467 0.0376707 0.0174221
BLKP 0.8550122 0.9511799 1.2180082 0.9260505 0.7388880
BLKPM 0.0103499 0.0122863 0.0153432 0.0111023 0.0072530
BPM 4.1469622 3.1691736 3.4190071 4.3036611 1.9647486
DBPM 1.8598675 1.5373425 1.9664839 1.9656078 0.9960145
DRBP 5.8442759 3.7147716 3.8067021 5.9581942 2.1710099
DRBPM 0.0564616 0.0381099 0.0339158 0.0570095 0.0190879
DWSPM 0.0004844 0.0004650 0.0004860 0.0005140 0.0003538
FGAPM 0.0762289 0.0613936 0.0787891 0.0816012 0.0277220
FGP 0.0924126 0.0741414 0.0892850 0.0982641 0.0364519
FGPM 0.0381748 0.0388822 0.0593331 0.0397320 0.0148375
FTAPM 0.0423525 0.0360058 0.0387168 0.0443252 0.0207639
FTP 0.2046918 0.1507218 0.1849054 0.2196255 0.1715088
FTPM 0.0334023 0.0267327 0.0305434 0.0371491 0.0189899
FTr 0.2803156 0.1655936 0.1393127 0.2861662 0.2383455
G 23.871467 21.060589 20.331142 23.794483 10.204553
GS 24.677925 23.985940 21.319717 22.273573 7.5045891
GSPG 0.3271101 0.3083840 0.2978070 0.2998471 0.1179909
MP 686.88900 656.31637 572.06215 647.01905 148.67105
MPG 6.1933996 5.7979847 5.4845185 6.2782114 2.8692306
OBPM 3.4675242 2.7815793 3.6429275 3.6342035 1.4925360
ORBP 2.2132313 3.3765336 5.3354179 2.6589175 1.8569007
ORBPM 0.0199487 0.0325654 0.0526570 0.0239066 0.0164142
OWSPM 0.0013526 0.0014585 0.0013019 0.0017692 0.0014169
PER 5.4179313 5.0377285 7.3385562 5.5701364 2.2747830
PFPM 0.0302994 0.0334963 0.0325314 0.0358807 0.0351431
PPM 0.1016158 0.0921533 0.1299677 0.1115868 0.0327425
STLP 0.7924065 0.6429261 0.8305095 0.9744914 0.2845687
STLPM 0.0158309 0.0126099 0.0166845 0.0193595 0.0068952
TOVP 4.6926668 4.7566650 4.6844650 6.3726775 4.2592407
TOVPM 0.0199476 0.0236505 0.0197564 0.0259002 0.0128672
TRBP 3.3449512 2.6329178 3.5421741 3.3710199 0.8700354
TRBPM 0.0599710 0.0489876 0.0589802 0.0605516 0.0234744
TSP 0.1109419 0.0763429 0.0880070 0.1191824 0.0446556
USGP 3.8851923 3.3544472 4.0760959 4.0968989 1.3018100
VORP 1.0380392 1.0385961 0.9048020 0.9632704 0.7988298
WSP48 0.0927613 0.0863651 0.1250682 0.0967065 0.0409234
WSPM 0.0013395 0.0015363 0.0014712 0.0016757 0.0012436
eFGP 0.1117355 0.0806755 0.0977359 0.1197191 0.0430093

12


