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Abstract—Prior work has demonstrated that multiple meth-
ods for link-based classification (LBC) can substantially im-
prove accuracy when the nodes of interest are interconnected.
To date, however, very little work has considered how methods
for LBC could be applied in domains that require confinuous,
rather than categorical, predictions. In addition, prior work
with LBC has learned only one predictive model to use for all
nodes of a given type, but some domains exhibit significant
node diversity that is not well-suited to this approach. In
response, we introduce fully heterogeneous collective regression
(FHCR), a new method that learns node-specific models from
data and uses these models to jointly predict continuous
outputs. We apply FHCR to a voting prediction task, and
create novel correlation-based links that outperform alternative
methods. In addition, we introduce multiple new methods
for inferring continuous outputs that can incorporate link-
based information, and show that regression-specific methods
based on Bayesian inference outperform the naive approach
of inserting regression into existing LBC methods. Overall,
we demonstrate the viability of the new FHCR paradigm by
producing results that are comparable or better than those of
previous link-unaware methods, yet are at least two orders of
magnitude faster.

Keywords-collective inference; collective regression; link-
based data; online predictions;

I. INTRODUCTION

Increasingly, many important domains in the world can
be viewed as networks of linked nodes, such as people in
online social networks or webpages connected by hyper-
links. To leverage these links for prediction and analysis
tasks, Machine Learning researchers have developed multi-
ple techniques for link-based classification (LBC) [1]-[6].
While LBC can substantially improve prediction accuracy
in some domains, current limitations greatly restrict its
applicability when used to evaluate heterogeneous domains
(e.g., when the collection of “nodes” under study are actually
drawn from multiple populations). Additionally, traditional
LBC predicts only categorical outputs, while link-based
regression to predict continuous outputs has been left largely
unexplored.

One such application that requires continuous outputs
involves elections. Predicting the voting outcome of national
or regional elections is a challenging yet important problem,
and has great implications for regional and international
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security. As just one example, how well can the national
outcome of an election be predicted, given past voting
history and some incomplete “day of voting” results? A
recent study by Etter et al. [7], using Swiss referendum
outcomes, reported high accuracy, even when only 5%
of voting “regions” had reported results. This study used
a matrix factorization approach to implicitly leverage the
correlation present between “nearby” regions. They did not,
however, consider formulating the regions as a network.

This paper presents the first extension of LBC methods

to node-specific predictive models and continuous outputs,
producing fully heterogeneous collective regression (FHCR).
To demonstrate the effectiveness of this approach, we apply
it to the voting prediction task of Etter et al. We show that
our link-based approach can be highly effective, even though
the data initially contains no links.

Our contributions are as follows:

e« We introduce a new paradigm, Fully Heterogeneous
Collective Regression (FHCR), for predictions based on
relational data. This new paradigm enables for the first
time the application of link-based inference algorithms
to domains with highly heterogeneous objects and
continuous outputs.

« We introduce multiple new methods for inferring con-
tinuous outputs, for both the initial “bootstrap” problem
where predictions must be made without links, and for
the “collective” inference step where links are used.
In both cases, we demonstrate that novel applications
of Bayesian inference often lead to improved voting
prediction accuracy, especially when relatively little in-
formation is known about a particular vote. In addition,
we show how this inference can elegantly combine
link-based information with information about object
features, yielding further accuracy gains.

« We create novel methods for link creation based on
historical correlations, and demonstrate that for voting
prediction they generally yield more accurate results
than simpler methods based on geographic proximity.

« We perform extensive evaluations of FHCR on the vot-
ing prediction task. By combining our new methods, we
achieve voting prediction results that are competitive
with or even improve upon those used by the prior



study, but execute 110-790 times faster than previous
methods.

Below, Section II introduces relevant background on LBC
and Section III discusses work specifically related to FHCR.
Section IV explains the voting task of Etter et al. and
explains why FHCR is appropriate for this task. Section
V gives an overview of FHCR and explains the key steps
needed to apply it to voting prediction. Section VI presents
our experimental results, and Section VII concludes.

II. BACKGROUND ON LBC

Assume we are given a graph G = (V, E, X, Y, C) where
V is a set of nodes, F is a set of edges (links), each ; € X is
an attribute vector for a node v; € V, each Y; € Y is a label
variable for v;, and C is the set of possible labels. We are
also given a set of “known” values Y ¥ for nodes VX c V,
so that Y& = {y;|v; € VE}. Then a common link-based
classification (LBC) task is to infer YV, the values of Y;
for the remaining nodes V'V with “unknown” values (VY =
V\ VE),

For example, given a (partially-labeled) set of interlinked
university webpages, consider the task of predicting whether
each page belongs to a professor or a student. The simplest
(non-LBC) approach would be to learn a model that predicts
the label for page v based solely on the attributes of v,
such as the presence or absence of certain words. An LBC
approach would instead combine these “self attributes” with
some relational features, which are based on the labels of
pages that link to v. For instance, it might construct a rela-
tional feature such as “Count the number of v’s neighbors
with label Student.” However, this is challenging, because
some labels are unknown and must be estimated, typically
with an iterative process of collective inference [3], such
as Gibbs sampling, belief propagation, or ICA (Iterative
Classification Algorithm) [4].

For this paper, the most relevant collective inference ap-
proach is ICA, a simple, popular, and effective algorithm [2],
[4], [6]. ICA first predicts a label for every node in VU using
only self attributes. It then constructs additional relational
features Xr using the known and predicted node labels
(YE and YY), and re-predicts labels for VU using both
self attributes and X . This process of feature computation
and prediction is repeated, e.g., until convergence or for a
fixed number of iterations.

III. RELATED WORK

While there has been substantial prior work on collective
classification [1]-[6], only a few exceptions have considered
collective regression [8]-[10]. Loglisci et al. [8] and Alodah
& Neville [9] both use aggregation functions like MEAN
or MEDIAN to aggregate information from linked neighbors
into relational features that are then provided to a regression
tree model for actual prediction. Alodah & Neville predict
total movie revenue using a dataset from the IMDB database,

while Loglisci et al. predict various target values for eight
small (less than 1000 nodes) social and spatial datasets. For
collective inference, Loglisci et al. essentially use ICA where
the classification model is replaced with a regression tree.
Alodah & Neville use this approach as well, but also do M
rounds of gradient boosting, where subsequent rounds learn
to predict the amount of residual error that remains from
previous rounds. In contrast, Zhang et al.’s “NetCycle” [10]
approach primarily concerns classification, again using ICA
with relational features created by aggregation. However,
their paper includes one set of experiments that perform
collective regression instead of collective classification. They
do so by replacing the classification model with support
vector regression, without other modifications specific to
regression.

Our work with FHCR differs from the above works
with collective regression in two primary ways. First, we
introduce and use a “fully” heterogeneous approach, where
every node has its own regression model. This allows us
to leverage the historical data of each region, accounting
for regional differences. In contrast, the above methods
use a single model for all nodes, with the exception of
NetCycle, whose “partially heterogeneous” approach learns
2-4 different models for the entire dataset (e.g., one model
for “authors”, another for “conferences”, etc.). Second, all of
the above approaches use a form of “ICA with regression,”
where relational features somehow aggregate the information
about linked neighbors, and then these features (together
with attributes about each node) are provided as input to a
link-unaware regression model (such as regression trees). We
also consider this method (which we call REGRESSICA), but
our results show that instead constructing a new approach
that explicitly leverages the continuous nature of the target
values, and their linked neighbors, yields better results. In
particular, our results later show that methods based on
Bayesian inference, using Gaussians to represent the learned
conditional distributions, lead to more accurate results while
maintaining computational tractability.

For work focused on classification, rather than regression,
there have been a number of other studies that use “partially
heterogeneous” approaches, similar to that used by NetCy-
cle. For instance, Neville and Jensen [11] studies link-based
classification for a “movies” domain that includes movies,
producers, and studios. They learn different models for each
type of node (e.g., for movie, producer, and studio), as op-
posed to the node-specific models that we use for our “fully
heterogeneous” approach. In contrast, some other work (e.g.,
[12], [13]) in domains where there are multiple node types
(such as papers, authors, and conferences) still learns only a
single model (e.g., for papers), but the relational features
are constructed based on “meta paths” that can traverse
multiple types of nodes. Thus, this work also describes itself
as “heterogeneous.”

Our particular task of voting prediction could potentially



be accomplished through methods based on “recommender
systems” and/or matrix factorization. For instance, Koren
et al. [14] explores the use of collaborative filtering to
generate user-specific movie recommendations. Koren et al.
shows how latent factorization methods can be used to infer
unintuitive relationships between different sets of factors
to make more accurate predictions; Etter et al. uses some
such methods and we compare against them. Note, however,
that the domains motivating such methods typically have
very sparsely-labeled data, as a user is unlikely to, for
instance, have watched a majority of all films in the target
domain. In contrast, we have a dense set of historical voting
records, which naturally leads to a different set of learning
challenges.

IV. TARGET PROBLEM & DISCUSSION

Because relational data is so commonplace, there are
numerous applications for which the FHCR paradigm could
be useful for making more accurate predictions. One of
these applications is the prediction of voting outcomes. For
this task, continuous, node-specific, and “online” results are
desirable. First, continuous results are desired because, while
a referendum ultimately has a single binary result (“passed”
or “failed”), various stakeholders would like to be able to
predict with much greater fidelity whether a referendum will
pass with strong support, weak support, or not pass at all.
Second, node-specific predictive models are desired because
the nodes under study are regions that exhibit significant
diversity, such that using a single model for all regions would
substantially decrease accuracy. For FHCR, this approach
is feasible wherever we have extensive information about
each node (region) or small groups of nodes, as is true
with our historical voting records. Finally, we would like
online results, meaning that as the results for more regions
are reported (e.g., on the day of an election), we should be
able to quickly make new, more precise predictions for the
remaining unreported regions. While these types of results
are ideal, in practice voting prediction is often a difficult
task, evidenced by the frequent disconnect between reported
media election forecasts and true election outcomes.

In this paper we apply FHCR to predict voting outcomes
on the dataset used by Etter et al. [7]. The dataset contains
voting outcomes for 281 Swiss national referendums over
a period of 34 years. As with Etter et al., we use first 231
votes for training and the final 50 votes for testing. Results
are reported (as the proportion of “yes” votes, between 0
and 1) for each of the 2352 regions (municipalities) in
Switzerland. Each region d is described by 25 “per-region”
demographic features x4 (population, population density,
language spoken, location, etc.), while each vote n has 13
“per-vote” features w,, that are the recommendations (“for,”
“against,” or no recommendation) made by major political
parties. Since online prediction is desired, the task is to
predict the “yes proportion,” on some test vote, for every

Table I: Summary of features and regression types used in
various “bootstrap” models.

[ Modet | Use vote feats?  Use region feats? Combination Method |
LIN(V) Yes No N/A
LIN(R) No Yes N/A
JOINT(R,V) Yes Yes Alternating Least Squares

BAYESD+INDPT(R,V) Yes Yes Approximate Bayesian Inference
BAYESG+INDPT(R,V) Yes Yes Exact Bayesian Inference
JBG-ENSEMBLE Yes Yes ALS and Bayesian Inference

region, given the voting results for some number of “known”
regions (which are assumed to have already reported their
results, or to have high-quality estimates from surveying).

The “vote” and “region” features can be used for predic-
tion. However, to compensate for the varying popularity of
different votes, Etter et al. mean-centers each training and
test vote, using the true national average for the training
votes and the estimated national average (computed using
only the “known” regions) for the test votes. Thus, the
possible values for prediction range from -1.0 to 1.0. We
use this same approach.

Etter et al. used a four factor model to predict continuous
outputs for regional votes. This model incorporated a bias
term for each vote, a regression term based on “region”
features, a regression term based on “vote” features, and
a matrix factorization model based off of latent features and
the set of votes. However, Etter et al. did not use any LBC
or collective regression. In particular, Etter et al. does not
treat the data as a graph or explicitly use links.

V. PREDICTION WITH FHCR

FHCR follows a pattern similar to that of ICA as described
in Section II: initial predictions are made using features,
then a collective inference procedure iteratively updates
those predictions for each region based on its relevant
features and the predictions of linked regions. This section
thus studies the following key questions required to make
FHCR effective:

1) How to “bootstrap” the initial predictions to provide
a baseline for our inference?

2) How should links be computed, so as to connect the
regions into a useful graph?

3) Given the initial predictions and informative links,
how can we perform effective collective inference?

A. Methods for “Bootstrap” Prediction

Before collective inference can be used for a particular
test vote m, we must compute a set of initial “bootstrap”
predictions y{(io) for each region d. These are computed using
the vote and/or region features, but without the use of links
(see summary in Table I). Some methods used by Etter et
al. are suitable for this task, so we consider those first:

e LIN(V) - linear regression based only on the vote features.
We train each region’s model by comparing the 13 political
party recommendations w,,, for each training vote m to that



region’s voting outcome, yielding the following predictions
for test vote n: ©
0 T
Yag = Vad Wn
where 4 is a weight vector specific to region d.

e LIN(R) - regression based only on the region features.
For test vote n, we use a vote-specific model that takes x4
(the 25 features of region d) as input, with coefficients 3,
learned using only the “known” region results for vote n.
Then for inference, 3\ = 87,.

e JOINT(R,V) - regression based on the region features
and the vote features. This approach uses alternating least
squares to learn a joint model:

0
Y = Bl + 3w
Etter et al. called this model LIN(R)+LIN(V).

New methods: Of the above methods, Etter et al. generally
showed that using both sets of features performed best.
However, the linear combination approach of JOINT(R,V) is
not necessarily optimal (for instance, independently-learned
models may perform better when there is less data available
for learning). In response, we created three new bootstrap
methods that combine region and vote features in different
ways:

e BAYESD+INDPT(R,V) - This method performs Bayesian
Inference using conditional distributions for the vote and
region features, learned independently. First, we use Bayes
rule to calculate the probability that the prediction for a
particular region, yg4, is a certain value y, given the region
features x4 and the vote features w,,:

P(xdywnk'/d = y) ) P(yd = y)
P(xg,wy)
o P(zalya =y) - P(wnlya = y) - P(ya =y)
~ P(ya = ylza) - P(ya = ylwn) 0
P(ya=1y)
where the second line assumes conditional independence and
the third line re-applies Bayes rule to the first two terms.
To estimate P(yq = y|w,), we apply the LIN(V) model
to the training data. Then, we generate a discrete histogram
(we use 500 uniform-sized bins) based on the error between
the true training values and predictions made with LIN(V),
for all regions and training votes. This learns a single
histogram for all regions, which can then be applied during
inference for a particular region (as P(yq = ylw,)) by
shifting the mean of the histogram to the value predicted by
LIN(V). P(yq = y|xq) uses a similar same process but with
LIN(R), where learning uses all training votes but only the
regions that will be “known” during inference. Finally, the
actual bootstrap step finds the most likely value of y4 via
Equation 1 and a discrete estimate of the following integral:

P(ya = yleg,wn,) =

1
yy =/ Y- P(ya = ylza, w,)dy. ()
-1

e BAYESG+INDPT(R,V) - this method also uses Bayesian
Inference to leverage the vote and region features, via Equa-
tion 1. However, by approximating the conditional prob-
abilities as Gaussians, we enable exact inference, instead
of resorting to a discrete approximation (hence, the “G”
vice “D” in the name). In particular, we substitute normal
distributions for each probability, yielding the following:
N(BLx4,52) - N(vFw,, o2
P(yd :y|xd7wn) x (Bn Cf/;/(';)) 82 (7()1 n> v).

» Y prior

In this equation, each mean is computed based on the results
from LIN(R) or LIN(V), or is known to be zero (due to
mean-centering of the data). The variances (02, o2, and
afmor) can be estimated by comparing predictions to actual
values in the training data. With this form, the most likely
value for y; can be computed exactly, because the product
of two Gaussians f and g is also a Gaussian [15], [16], with

the following mean and variance:

_ /,LfO'Z + ugo']% 0?05
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e JBG-ENSEMBLE - a combination of the previous two
methods. We average the predictions generated by the
JOINT(R,V) and the BAYESG+INDPT(R,V) models, poten-
tially mitigating the impact of outliers predicted by either
model. Later results will show this can be very effective,
while remaining computationally tractable.

B. Effective Link Generation

Target uses of FHCR may involve nodes, such as people
in a social network, for which links already exist or are
obvious. In other cases, as with our voting domain, there
may be no explicit links, in which case a key task is
to construct informative links to connect the nodes (i.e.,
regions), in a way that facilitates subsequent inference.

In our data, regions are identified by latitude/longitude,
and thus one natural idea is to link all regions that are within
a certain distance, such as 5 kilometers. Distance can also be
inverted and scaled to produce link weights, so that “closer”
regions have more influence. Section VI shows that both of
these ideas can be effective.

For voting prediction, however, we hypothesized that
linking regions based on similar voting histories would
prove even more effective than links based on geographic
proximity. Thus, we examined the 231 training votes and
computed the Pearson correlation coefficient between all
pairs of regions. We then consider methods based on linking,
for each region, the k most-similar regions, or all regions
with a correlation greater than some threshold (e.g., 0.80).

C. Collective (Link-based) Regression

Regression techniques are well established, but collective
regression requires some kind of iterative procedure to allow



the predicted and known values to propagate throughout the
links. In each case, the initial predicted values (y((io ) are set
via a bootstrap method from Section V-A. For inference,
we first consider two baseline methods, which are simple
extensions of existing LBC methods to regression:

e REGRESSICA - This method uses ICA, described in
Section II, but with an underlying model of regression
rather than classification. Prediction for region d is based
on d’s vote features and, as a relational feature, the average
predicted value for d’s neighbors. For each iteration ¢ (after
bootstrap), predictions are computed as

(i-1)
ZJELEL Yj )
| Ldl

where f is a learned (linear) regression model and L, is the
set of regions that link to region d. We use 10 iterations;
more did not improve accuracy. When links are weighted,
the neighbor average is a weighted computation, but for ease
of explication we omit all such “link weight” details in this
section.

y((ii) = f(wn’

e WEIGHTEDVEC - Instead of using the neighbor average
as a feature for regression, this method uses the neighbor
average as its actual prediction. Thus, predictions are
computed as follows:

(i)
S0 = 2uienaYy
¢ | L

This method is analogous to the “weighted vote relational
neighbor” (WVRN) method of Macskassy and Provost [17],
but adapted for regression instead of classification.

New methods: We also created the following new methods
for collective inference:

e BAYESD+LINKS - this method seeks to use Bayesian
Inference to estimate the most likely prediction for y4, given
only the predicted (and known) values of region d’s linked
neighbors, yr,. This can be computed as follows:

P(ya=ylyr,) = Plya = y)P-(Jgjiy)Ldyd =y)
x P(ya=v) [ Pslya=v)
J€ELa

where the last step assumes conditional independence of the
neighbors’ values given y .

In general, estimating P(y;|yq = y) from the training
data could be a challenging task. However, we conjecture
that for our purposes this probability can be approximated
as a function solely of the difference between y; and ya.!

For example, we estimate that the likelihood of y; being 0.3 given yg
is 0.25 is approximately the same as the likelihood of y; being 0.4 given
yq is 0.35. This would be approximately true if similar (linked) regions
tend to vote in the same ways.

Substituting for P(y;|ys = y) with that idea yields
) I o —va) @

Jj€La

P(ya =ylyr,) < P(ya =v)

where ¢(x) is some arbitrary function. To approximate ¢(x),
we first calculate, for each region d and training vote, the
difference between the mean-centered voting outcome for
d and those of each of its linked neighbors. We then add
these values to a histogram (again using 500 uniform-sized
bins) to produce a discrete estimate of ¢(x) (shared across
all regions). For inference, we can then compute the most
likely value of P(ys = ylyr,) via an approximation of

yy = / Y- Plya=ylyV)dy.
-1

This is similar to our previous use of Equation 2, but now
predicting with d’s neighbors instead of d’s features.

e BAYESG+LINKS - This method is similar to
BAYESD+LINKS, but approximates the link-based
conditional probabilities with Gaussians, enabling exact
inference via variants of Equation 3 (see [16]). With this
approach, Equation 4 becomes

P(yd = y‘yLd) OCN(Ova-\grior) ’ H N(y]aa—lenke)
J€Lq

The first term is the prior, with assumed mean zero, and
variance estimated from the training data. The link-based
Gaussian for region j, which replaces ¢(y; — yq), uses
a mean of y; (the predicted or known value for j), and
variance 05, . (based on fitting ¢(y; — ya) to a Gaussian
with the training votes).

This method has the advantage of yielding much faster
inference than BAYESD+LINKS (e.g., about 40 times faster
in our experiments). In addition, it avoids errors that result
from discretization. However, do the Gaussians actually
represent the conditional probabilities of Equation 4 in a
way that is effective for inference? Section VI evaluates their
impact.

Incorporating features: The methods discussed above (ex-
cept for REGRESSICA) have used only the “link” informa-
tion for their inference. The following new methods all seek
to improve prediction accuracy by also exploiting the vote
and/or region features.

e WEIGHTEDVEC+DELTA - this method uses the
WEIGHTEDVEC approach, but modified to also leverage
vote-based features. In particular, we learn a region-specific
“delta” correction, based on the training error between each
region’s true value and the value predicted by WEIGHTED-
VEC, yielding

(i—=1)
1) ZJGLd yj

@ _
b= L, )



where f; uses the vote features for prediction. This relates
to the residual learning of Alodah & Neville [9].

e BAYESD+INDPT(R,V)+LINKS - while similar to
BAYESD+LINKS, this method takes region and vote features
into consideration in addition to the links. Following a
similar derivation as before yields

P(ya=ylza)-P(ya=ylwn)1;er, #(¥i—va)

P(ya=y) )

where the three conditional probabilities can be estimated
as previously discussed.

P(yq = y|2a, Wn,yL,)

e BAYESG+INDPT(R,V)+LINKS - this method uses the
same approach as above, but approximates the probability
distributions as Gaussians. Therefore,

N(Brwa57) N (v wa,30) Tler, N Wi i)
N(0,52
(6)

prior)

e BAYESG+JOINT(R,V)+LINKS - this method uses an
inference strategy similar to BAYESG+INDPT(R,V)+LINKS.
Above, we assumed conditional independence for the condi-
tional probabilities associated with the region and the vote
features. However, the region and vote features may have
interactions. Thus, instead of using two separate Gaussians
for these features, we use one Gaussian based on the
JOINT(R,V) implementation of the region and vote features.
Collapsing these two terms into one also causes the denom-
inator to cancel, yielding

P(yq = ylxg, wn,yr,) <

P(yd = y‘zzhwnvyl«i) & N(ﬁzl‘d + 73w7l7a]20i71t) : HjELd N(’yj‘al%nlcs)

o BAYESG+JGB-ENSEMBLE+LINKS - this method is
nearly identical to the previous method, except that the mean
used for the first Gaussian is computed based on the pre-
diction from the JBG-ENSEMBLE bootstrap, with variance
based on averaging the variance of the two Gaussians arising
from the two parts in the ensemble.

VI. RESULTS

Below, we study how to use FHCR most effectively
via appropriate choices for bootstrap, link generation, and
collective inference.

Our experiments replicate the experimental conditions
used by Etter et al., using the data and conditions described
in Section IV. For a given test vote, the task is to predict
the “yes percentage” for each region, given the results for
some subset of regions (thus simulating a prediction task
with partial “day of voting” results); there are Ng such
“known” regions. For each trial, these regions are selected by
first choosing a random “reveal order” for all 2352 regions.
The first Nj regions are considered “known”, while the
last 10% are reserved as “evaluation regions.” Performance
is evaluated by measuring the “root mean squared error”
(RMSE) over the evaluation regions, averaged over 60 trials.

Table II: Average RMSE after running only the bootstrap
step, with no collective inference. The best result for each
column is in bold. Nx = 2116 represents when all regions
except the “evaluation regions” have reported results.

\ Number of Known Regions, Ny, |
Bootstrap Method ‘ 1 5 10 50 100 500 1000 2116 ‘

LIN(V) 11.70 889 848 802 795 791 791 790
LIN(R) 1289 920 844 703 662 6.16 6.08 6.03
JOINT(R,V) 1240 9.15 832 676 636 590 582 576

| BAYESD+INDPT(R,V) | 11.89° "852  7.88° 683 654 621 6.16 6.46 |
BAYESG+INDPT(R,V) | 12.08 8.19 7.57 656 630 599 593 589
JBG-ENSEMBLE 1174 836 7.67 649 6.18 582 575 5.70

Each trial uses the same reveal order for all methods, and
we used Etter et al.’s original code to produce results with
their methods.

A. Bootstrap Methods

Table IT shows the RMSE values vs. the number of known
regions (Nj) as we vary the bootstrap method; lower values
are better. In general, error decreases as Ny increase for two
reasons. First, methods that use the region features, such as
LIN(R), use the known values for the given fest vote to
learn their classifier, and learning with more such results
decreases error. However, error also decreases for LIN(V),
whose classifier is learned solely from vote-based features
with 231 fully-observed training votes (and thus not directly
affected by Ny), because the predicted mean for test vote n
is estimated from the N, known regions (see Section IV). A
larger Ny, produces a better estimate, which helps all models.

We first consider the three methods from Etter et al. (first
three rows of Table II). When there are very few known
regions (Nx < 10), using only the vote features, with
LIN(V), performs best. In contrast, using only the region
features has higher error, due to the small number of regions
available for training LIN(R), as discussed above. LIN(R)
improves rapidly as Ny increases, so that it outperforms
LIN(v) for N, > 10. However, using both the region and
vote features, with JOINT(R,V), performs even better, for
N > 10.

We next consider our three new bootstrap methods (last
three rows of Table II), which all use some Bayesian
inference to combine the region and vote features. For all
cases except N = 1, the Gaussian approximation with
exact inference (BAYESG+INDPT(R,V)) yields better RMSE
than the discrete version (BAYESD+INDPT(R,V)). Moreover,
combining these predictions with those of JOINT(R,V) (with
JBG-ENSEMBLE) yields even lower error, when Ny >
50. Overall, the last two rows of Table II show that our
new methods combining the vote and region features with
Bayesian inference succeed in reducing the error, compared
to the best previous alternatives, LIN(V) and JOINT(R,V).
This demonstrates the general utility of the Bayesian infer-
ence method for combining disparate sources of information,
as will be further demonstrated in Section VI-C.



B. Impact of Different Link Generation Methods

The prior section showed ‘“bootstrap only” results that
did not rely upon any links. Table III now shows the
results when collective inference is applied, with different
link generation methods. All cases use 10 iterations of
REGRESSICA; the next section considers different collective
inference strategies. Based on the results of the prior section,
we use JBG-ENSEMBLE for bootstrap, though results (not
shown) using BAYESG+INDPT(R,V) instead yielded very
similar results.

The top section of Table III shows results with proximity-
based links, with distance thresholds of 5, 10, and 20
kilometers. Of these, Prox-10km works best (except for
N = 1), by striking a good balance between having too
many links (with a large threshold) and having too few.
Adding link weighting based on nearness (with Prox-10km-
Wt) does not consistently improve the performance.

The second section of Table III shows results with links
chosen by correlation, e.g., linking all pairs of regions with a
correlation of at least 0.60 or 0.80. Picking many links with
the lower threshold (Corr-0.60) performs better when many
regions are “known” (NN > 500); in this case, the high
value of N reduces prediction uncertainty, and averaging
over many links is helpful. In contrast, the higher threshold
(Corr-0.80) performs better when N < 500, indicating that
having a smaller number of strongly correlated links is more
effective. The problem with this approach, for some cases,
is that using a high threshold causes some regions to have
only a few links. In response, the next two rows establish a
minimum number of links for each region. This method links
region d to all other regions with correlation at least 0.80, or,
if there are not enough such regions to meet the minimum,
to the top 10 or 20 most strongly correlated regions. With
this strategy, Corr-0.80-Min-10 almost always improves over
Corr-0.80 and Corr-0.60. For instance, for N, = 1000 the
RMSE improves from 6.40 with Corr-0.80 to to 5.49.

Encouraged by the success of setting a minimum number
of links, the third section of Table III thus considers linking
each region to its top k = 10 or £ = 100 correlated
other regions. Using 10 links for each region (Corr-10)
almost always performs a little better than the methods
discussed above, and substantially better than using 100
links (Corr-100). For instance, for N = 1000, Corr-10 has
RMSE of 5.46, while Corr-100 has RMSE of 5.98. The
last two rows of Table III show results where the links
are weighted based on the inter-region correlation values.
While leading to marginal improvements in some cases,
we find that weighting links in this case makes minimal
difference overall. For Corr-10-Wt, this is because there is
little variation in the correlation values when only 10 links
are chosen, so link weighting makes little difference. For
Corr-100-Wt, the differences (vs. Corr-100) are larger but
still quite small. Future work should consider whether a

Table IIl: Average RMSE of various link generation
strategies when running RegressICA with the ENSEMBLE
bootstrap.

‘ Number of Known Regions, Ny,

Linking Method | 1 5 10 50 100 500 1000 2116
Prox-20km 1248 911 842 738 706 629 598 583
Prox-10km 11.84 852 785 677 647 597 580 565
Prox-5km 1178 8.69 812 722 697 640 6.17 598
Prox-10km-Wt 1181 853 787 679 649 597 579 5.60

[ Corr-0.80 ~ ~ | 1221 " 901 829 7.5 688 651 640 630 |
Corr-0.60 1385 1002 9.6 7.90 7.64 650 598 5.70

Corr-0.80-Min-10 | 1233 892 8.08 6.61 6.25 570 549 53]
Corr-0.80-Min-20 | 1245 899 815 6.67 632 579 556 532

Corr-10 1220 887 8.08 6.64 624 566 546 529
Corr-100 14.09 1029 939 807 779 658 598 5.63
Corr-10-Wt 1220 8.87 8.08 6.64 624 565 546 528
Corr-100-Wt 1406 1025 935 800 772 6.54 594 560

different correlation formula (instead of Pearson’s) might
provide values more useful for this task, and make the final
results less sensitive to the number of links chosen.
Overall, we find that we find that Corr-10-Wt is the most
effective general strategy. While Prox-10km (and sometimes
Prox-5km) performs best for N < 10, Corr-10-Wt is still
an effective strategy for these values of Nj. Thus, we chose
Corr-10-Wt as our linking strategy for the next sections.

C. Impact of Different Collective Inference Methods

Table IV(a) shows results of varying the collective in-
ference method, using JBG-ENSEMBLE for bootstrap and
Corr-10-Wt for link generation. All methods use 10 iteration
of collective inference.

REGRESSICA and WEIGHTEDVEC can be considered
“baseline” methods for FHCR that are adapted from typical
approaches to link-based classification. Since REGRESSICA
uses features and links, it performs better than WEIGHTED-
VEC (which use only links), except for Nx < 5. Nonethe-
less, WEIGHTEDVEC also obtains accuracy close to that of
REGRESSICA when Ny is very high; this is reminiscent
of WVRN’s strong classification performance, compared to
more complex methods, for more densely-labeled graphs
[17].

The second section of Table IV(a) compares the three
“link only” methods: WEIGHTEDVEC, BAYESD+LINKS,
and BAYESG+LINKS.? In every case, our use of Bayesian
inference decreases the error compared to the simple aver-
aging approach of WEIGHTEDVEC (by 0.03 to 0.19), and
the Gaussian approximation with BAYESG+LINKS further
reduces error compared to the discrete approximation with
BAYESD+LINKS (by 0.01 to 0.10). In addition to reducing
error, inference with the Gaussians also executes about 40
times faster than with the discrete version.

The third section of Table IV(a) adds the use of vote
and/or region features to the three “link-only” methods.
With WEIGHTEDVEC+DELTA, this consistently reduces the

ZNote that these “link only” inference methods still use the feature
information during bootstrap.



Table IV: RMSE for various collective inference methods,
using JBG-ENSEMBLE bootstrap and Corr-10-Wt linking.
Within each column, we bold the best results. Part (a) of
the table uses methods from Section V-C, while part (b)
adds “variance scaling” (see Section VI-D).

‘ Number of Known Regions, Ny

Inference Method 1 5 10 50 100 500 1000 2116
(a) Proposed FHCR methods (without variance scaling)
REGRESSICA 1220 887 8.08 6.64 624 565 546 528
WEIGHTEDVEC | 1207 "884 ~ 814 698 6.63 594 562 533 ]
BAYESD+LINKS 1190 859 795 691 659 591 559 530
BAYESG+LINKS 1187 857 794 687 652 581 552 527
WEIGHTEDVEC+DELTA | 11.98 7865  7.88° 648 ~6.09 5350 531 515 ]
BAYESD+INDPT(R,V)+LINKS 11.88 851 7.88 691 6.61 593 560 530
BAYESG+INDPT(R,V)+LINKS 11.86 848 7.86 686 653 582 553 527
BAYESG+JOINT(R,V)+LINKS 11.88 860 794 6.74 636 5.69 544 522

BAYESG+JGB-ENSEMBLE+LINKS | 11.80 846 7.81 6.64 631 578 559 559
(b) BayesG methods with addition of variance scaling
BAYESG+INDPT(R,V)+LINKS 11.82 816 7.53 645 6.10 556 540 5.26
BAYESG+JOINT(R,V)+LINKS 11.80 855 7.86 6.51 6.11 548 530 5.20
BAYESG+JGB-ENSEMBLE+LINKS | 11.69 833 764 644 6.13 564 553 559

error, sometimes substantially (e.g., from 5.94 to 5.50 when
N = 500). With the four methods based on BayesD and
BayesG, however, the results are more muted. While adding
feature information during inference (with INDPT(R,V),
JOINT(R,V), or JBG-ENSEMBLE) generally improves accu-
racy compared to BAYESD+LINKS and BAYESG+LINKS,
the error improves by at most 0.23 and sometimes gets
slightly worse. Thus, while adding feature information gen-
erally improves the collective inference, with the Bayesian
inference it is surprising that this addition is not more
helpful. The next section addresses this issue.

D. Improving Inference via Variance Scaling

The previous section observed that incorporating the re-
gion and vote features into our inference was beneficial.
However, the features were significantly less helpful for
Bayesian inference than they were for WEIGHTEDVEC. We
conjecture that this indicates that the Bayesian methods
are not balancing, as effectively, the link-based and the
feature-based information. In addition, careful comparison
with Table II shows that, so far, the best results with
collective inference are actually worse than the best results
with just bootstrap, when N < 10 (for instance, for
N = 5, BAYESG+JGB-ENSEMBLE+LINKS has RMSE
of 8.46, but “bootstrap-only” BAYESG+INDPT(R,V) obtains
8.19). Thus, when there is more prediction uncertainty (due
to fewer “known” regions), the Bayesian collective inference
is sometimes doing more harm than good.

We conjecture that the problem with the Bayesian meth-
ods is that they treat all linked neighbors as being equally
“reliable” for prediction. In order to improve our Bayesian
inference, we must somehow teach it to discriminate be-
tween certain and uncertain values, “known” and “unknown’
neighbor predictions. This would also allow a region’s
features to have more weight when its linked neighbors are
less certain, which could help for the “small Ng” scenario.

Fortunately, certain properties of our BAYESG approach
can enable us to introduce helpful “discrimination” among

neighbors, as we now describe. Equation 3 shows that, when
combining two Gaussians, the Gaussian with the smaller
variance will have more impact on the resulting mean.
However, Equation 6 uses the same term, N (y;,05,,,,) for
each neighbor. In this term, the mean for each neighbor
varies (based on the predicted or known value y;), but
the variance is the same, regardless of the certainty of
y;. This variance is learned from the training data, where
there are no prediction errors, and thus is appropriate for
a link to a “known” region. When linking to a “predicted”
region, however, this estimate likely underestimates the true
variance. Therefore, we propose to scale the variance used
for “unknown” regions as follows:

=Ky - 02

~2
Ulink,sToUnknownRegions links

where K is a constant learned via cross-validation. In
particular, we evaluate the RMSE obtained via collective
inference on the last 15 votes of the training data, using
Ky € {2,4,8} and select the Ky that minimizes RMSE
on this validation data. We then use that K for inference
on the actual test data and report results. With Ky > 1, the
larger variance will lessen the predictive influence of regions
with uncertain predictions.

Table IV(b) shows the results for three Bayesian in-
ference variants with the addition of this “variance scal-
ing.” As desired, the use of variance scaling leads to
substantial error reductions in many cases. For instance,
BAYESG+INDPT(R,V)+LINKS improves from 8.48 to 8.16,
for N = 5, which is the best for any method in Table
II or Table IV. Overall, this eliminates the situation where
“bootstrap only” results outperformed the best collective
inference, and in general some form of Bayesian inference
with variance scaling now performs best among the FHCR
methods that we consider in Table IV, with two slight
exceptions at Ny = 100 and N = 2116.

E. Discussion and Comparison

Table V compares our best results (using Bayesian in-
ference with variance scaling) with the four methods that
Etter et al. used for their in-depth comparisons. The first two
methods are baselines: BIAS, which simply uses the average
of all “known” results as its prediction, and the previously
discussed LIN(V), which uses regression on the vote fea-
tures. The next two methods are those that Etter found per-
formed best: MF+GP(R) and MF+GP(R)+LIN(V). Both
use matrix factorization (MF) combined with a Gaussian
process (GP) for the region features.

The left side of Table V reports per-region RMSE results
as used elsewhere in this paper, while the right side shows
the national “binary error rate.” To compute this latter metric,
which was also considered by Etter et al., we first use the
per-region predictions, weighted by region population, to
compute an overall “national” prediction; values greater than
0.5 yield a prediction of “pass” as the overall vote outcome.



Table V: Comparison of the best results with FHCR (first three rows) vs. two baseline methods from Etter et al. (next two
rows) and the best results from Etter et al. (last two rows). On left, we report average RMSE results for each region, as in
the rest of the paper. On right, we show binary error percentages, where the goal is to predict the overall outcome (e.g.,
pass or fail) for each vote on a national level. Within each column, we bold the best result.

Per-region results (RMSE)

\ National results (binary error percentage) \

Number of Known Regions, Ni: [ 1 5 10 50 100 500 1000 2116 | 1 5 10 50 100 500 1000 2116
New FHCR methods based on BAYESG (with variance scaling)
BAYESG+INDPT(R,V)+LINKS 11.82 816 7.53 645 6.10 556 540 526 | 1433 640 447 153 0.87 080 093 197
BAYESG+JOINT(R,V)+LINKS 11.80 855 7.86 651 611 548 530 520 | 1470 7.87 563 220 127 1.17 120 197
BAYESG+JGB-ENSEMBLE+LINKS | 11.69 833 7.64 644 6.13 564 553 559 | 1440 703 487 160 1.03 133 130 233
Methods from Etter et al. [7]
BIAS 12.89 1034 998 9.60 954 951 950 9.50 | 15.63 1000 830 6.67 6.00 4.17 3.80 2.00
LIN(V) 11.70 889 848 8.02 795 791 791 790 | 1447 850 590 233 197 133 143 193
MF+GP(R) 1289 890 7.76 6.03 568 518 5.01 487 | 1563 860 553 1.83 123 043 0.80 1.97
MF+GP(R)+LIN(V) 11.84 835 754 620 586 537 523 515 | 1460 7.83 530 247 197 067 0.67 1.90

The error rate is then the fraction of votes that are incorrectly
classified (at the national level) as “pass” vs. “fail.” The
error rate slightly increases when N is very high; Etter et
al. attributes this effect to weighting the final prediction by
each region’s population, as opposed to the actual “day of
voting” turnout, which is not a priori observable.

Overall, Table V shows that FHCR is highly effective at
the voting prediction task. In particular, our new methods
(and Etter’s) consistently decrease the errors compared to
the BIAS and LIN(v) baselines. Moreover, when N is
smaller, one of our new FHCR methods produces the best
results, both for per-region RMSE and the national error rate
results. For per-region RMSE, our methods are somewhat
better than Etter’s (by 0.01-0.19), when N < 50, while
they produce competitive results (lagging by at most 0.41
RMSE) for larger values of N. Interestingly, our meth-
ods do even better (relatively) on the national error rate
results, suggesting that they tend to do especially well on
more populous regions (which have a larger effect on the
national outcome). In particular, while the Etter methods
perform best when Ng > 500, for all Ng < 500, our
new BAYESG+INDPT(R,V)+LINKS (with variance scaling)
yields the lowest national error of any method. For instance,
when only 100 regions have “known” results, this method
has an error rate of just 0.87%, while the best Etter method
has an error rate of 1.23%.

Even more significantly, our new methods based on
Bayesian inference are much faster than Etter’s best meth-
ods in terms of runtime and computational complexity. In
particular, running on an Intel i7-4600M 2.90 GHz CPU,
Etter et al’s MF+GP(R)+LIN(V) takes about 480 minutes
to fully train and provide one trial of inference for one vote,
while MF+GP(R) requires 3360 minutes.® In contrast, using
our models based on BayesG, including cross-validation for
variance scaling, requires only 4.25 minutes, a speedup of
110-790 times vs. the Etter models. This is consistent with

3For both our code and Etter et al’s, the runtime is dominated by
training the model, while inference runs much more quickly. The simpler
MF+GP(R) took longer (vs. MF+GP(R)+LIN(V)) because more learning
iterations were required.

our analysis of computational complexity. In particular, if
R is the number of regions, then both of Etter et al.’s
MF+GP(R)+LIN(V) and MF+GP(R) train in time O(R?)
(primarily due to the matrix factorization), while our models
train in time O(R?) (due to the correlation computations
for pairs of regions). Note that our models’ faster times
are much more amenable to online and dynamic analysis,
as useful for “day of voting” predictions. Thus, compared
to prior work, our new FHCR methods obtain comparable
or better accuracy, especially when relatively few regions
have reported results, while executing at least two orders of
magnitude faster.

VII. CONCLUSION

Link-based classification (LBC) has been shown to sub-
stantially improve accuracy in a variety of domains, but
prior to this undertaking had rarely been applied to contin-
uous domains, and never to heterogeneous domains where
rich temporal/historical information could potentially enable
node-specific models. Our results show that extending the
LBC paradigm to fully heterogeneous collective regression
(FHCR) indeed addresses these limitations of LBC.

We have developed techniques that are efficient and
effective. In particular, we introduced novel methods that
combine feature-based and link-based information using
Bayesian inference. We showed that these methods always
outperformed extensions of LBC methods like ICA, and
almost always outperformed multiple versions based on
neighbor averaging (e.g., with the variants of WEIGHTED-
VEC, which was derived from WVRN [17]). Moreover, we
demonstrated results that are comparable to or better than
the previous link-unaware methods used by Etter et al.,
especially when the results from only a small number of
regions are known — yet our methods are at least two
orders of magnitude faster. This greatly facilitates online
prediction of results, for example for updated “day of voting”
results, or for pre-voting result forecasting, where resources
are available to extensively canvas only a small fraction of
voting regions.



Future work should consider further improvements to
these methods. For instance, alternative correlation metrics
may help to select even more effective links, or to provide
values that are more useful as link weights. In addition,
we found that WEIGHTEDVEC was substantially improved
via the addition of a vote-feature-based classifier that pre-
dicts the amount of remaining error; could this approach
profitably use the region features as well, despite the lim-
ited training data available for such features? Finally, we
demonstrated that “variance scaling” was highly effective at
reducing error for our methods based on Bayesian inference,
by compensating for the differing amounts of uncertainty
between “known” and predicted values. Future work should
study further refinements, for instance to vary the effective
variance that is used for each region based on an estimated
confidence for its current prediction [18].

Some aspects of our proposed methods are specific to the
particular voting prediction task that we used. For instance,
we demonstrated how to profitably combine information
from two distinct feature sets (the “per vote” and the “per
region” features) that required distinct learning strategies.
Other domains where FHCR could be useful may not have
such feature diversity. However, the methods we proposed
for using Bayesian inference to combine the information
from a varying number of linked neighbors, and to combine
that information with feature-based predictions, are appli-
cable in other settings, such as per-region sales prediction,
weather forecasting, crowd-sourcing predictions [10], and
other time-varying social phenomena. Future work should
explore the application of FHCR in these domains.
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